

Read these instruction carefully before instalation and use and follow
all recommendations regarding instalation and for the electic con-
 1.2 Dimensions and installation

$$
L_{96.0137791}^{\longrightarrow}
$$

Recommendation for the electic connection:

- do onot operate on the eteminal booards using electic or pneumatic strevedrivers
- fith instument has been taken from a cold place to a hot one, the
humidity could condense inside Wait bout one hour before applyLimg power Make sure that the power supply volage, frequency and operationa
electric powere corresponad to those of the local power supply - disconnect the power supply beforre pefforming any tpe of mainte-
nance - neque $\begin{aligned} & \text { equip the probes with a protection able to insulate them against any }\end{aligned}$

- do not use the instrument as a sfiely device - for repais and information regarding the instrument, contact the

2.1 Preliminary consididrations
The instrument can be configuret to function with 1 measurement
input Idefaut, chamber probel or with 2 measurement inputs too
input ddefautut chamber probel or with 2 measuremenent inputs liop
probe and floor probel.
Probe and floor probel.
Funcioioning with measurement input allows to independently set
the power distributued to the top to to that distributued to the foor. func-
 tioning with 2 measurementi inputs allows to independently set the top
and floor work temperatures
The utifities manageed doy the digital outputs 1 I.e. the $K 1$ I relays... KG) are the folowng:
RELAY UTUTY MANAGED

RELAY
KI
1

Toset the type of
see paragraph
2.2

${ }_{2}$ 2.2 Management of the utilities

$\frac{\text { Top }}{1 \text { If functioning with } 1 \text { measurement input }}$
 output is off the perameter cl establishes the cycle time. The proce-
dure given in paragraph 4.3 can be used to set the duration of output switch-on, intended as a percentage of the time established with parameter (1))

- the eycelical activiy subject to the chamber te
probel, to the work setpoint and parameerer ro probel, to the work set-point and parameter ro.
If funcioring with 2 measurement inputs:
If functioning with 2 measurement inuts:
- the output activity depends mainly on the floo temperature flloor - the output activity depends mainly on the floc
probel, the floor setpoint and parameter ro.

If fiornctioning with 1 measurement input:
If functioning with 1 measurement input:

- the output is switched on in cycical mode, preferably when the top outupt is off inhe parameter 1 c estabishes she cycle time. The e proce
dure given in dure given in paragraphph 4.3 can be used to set the duration of output
switch -one, intended as a percentage of the time established with
 -the cycicial aldiviti is subject to the chamber tem
probel. tot ote work setpoint and parameer ro.
If functioning with 2 measurement inuuts: -the outpur activily depends mainly on the floor temperature flio Alame.
The output is activated during a temperature alarm.
$\frac{\text { Chamber light. }}{\text { The output is ad }}$
Through the multifunction inputitis saso possible to activate the outpurin
in remote mode
Acoustics
Acoustics
The outpi is ativivated during an alarm or an error, with continuous
Contribution
contribution.
On/stand-by
Ons output is activated during the "on" status ssee paragraph 3.1 .
3 USER INTERFACE
3.1 Preliminary consideration
The following functioning states exist
- the on" state (the instrument is powered and on: the reguators can
be onn
- be on) " - the stand-by" state !the instrument is powered but switched off via sotware: the reguilators are offl Successivey, the terem "switchon' means the pasasage from the stand-by
 on state tot the stand.by state.
When powered. the instrume the power supply was disconnected.
3.2
Instrument switch on/off To pass from the stand-by state to the on sate land vice versal: - press $\left(\sigma_{0}\right.$ for 1,

To pass from the ont to the stand.by state in remote mode

- activate ene onstandoy in inupt the instumentremains in
state for the entire curation of
 stand.by state to the on state by pressing the \bar{O}_{e} key.

3. 3. 3 The display
lfanctioning with 1 measurement input. if the instrument is in the on
 - the upper part of the display will show the quantity estabisised with parameter P5:
-if $P 5=0$, the disp
 - the lower part of thy tive display will show the size established with
rameer P b.

- iff $=1$, the display will show the work setpoint (in this case the " set"
LED will be on).

LED will be onl.
see also paragraph 3.4 and 3.6 .
If functioning with 2 measurement
lffunctioning with 2 measurement inouts. if the instrument sis the on
state

rameeer P5: 5 :

- if $P 5=0$, the display will show the top temperature
- if $\mathrm{PF} 5=1$, the display will show the top setpoint
- if $P 5=2$, the dispala will how the foor temperature
-if $P 5=3$,
-if $\mathrm{P} 5=3$, the display will show the floor setpoint
- the lower part of the display will show the size established with p par
rameer

MPG $=1$, the display will show the top setpoint tin
LED and the 1 I LED will be on
- if $\mathrm{F} P=2$, the display will show the floor temperature
- ifpg $=3$, the disply will show the fioo setpoint int this case the "set"

See alo paragaph 3.3 .4 ane 3.0 .
If the instument is in the stand.by state
$\frac{I t}{}$ the instrumentis is the stand-by state:
the upper part of the dis
:the lower pat of the dis
the LED © (C) will be on.

\section*{| the |
| :--- |
| 3.4 |}

- the LED \mathbb{C} will be on.
3.4 $\begin{gathered}\text { Learning the quantity shown by } \\ \text { the display during the on state }\end{gathered}$
- maze sure no procelure is in progess

upper part of the display will show one of the
labees given in the following table for 2 seconds:

LABE Pb PP
$\mathbf{S P}$

 \begin{tabular}{l}
Will show one of the labels given in the following table for 2 seconds:

LABEL	
Pbo	MEANNNMG

\hline
\end{tabular}

$\mathrm{SP1}$
Pb P2 P2

3.52
Tfloor setpoint
Temporary
setting of the quantity shown by the
upper part of the display during the on state
So for 1 s.everal times: the upper part of the display
will show one of the alaes given in the tables in
will show one of the abels given in the tables in
paragaraph 3.4 for 2 secs, afere which it wiil show
the corresponding value.
Any power supply cuturf causes the dispay of the quantity estabished
with parmetr
3.6

3.6 $\begin{aligned} & \text { Learning the quantity shown by the lower part of } \\ & \text { the display during the on state }\end{aligned}$

| LABEL | MEANIG |
| :---: | :--- | :--- | :--- |
| Pb | chamber tem |

LABEL
$\begin{array}{c}\text { Pb } \\ \text { PP } \\ \text { sp }\end{array}$

fiun cioning with 2 measurement inputs, the lower patt of the display Value of the cooking limes give or is is count in follow time tabl facative 2 seconds

SP2 fifor setpoint the floor
Temporary setting of the quantity shown by the
lower part of the display duing the
 Will show one of the labels given in the tables
paragraph 3.0 for 2 ses, after which it wil show
the corresponding value. Any power supply cut-off causes the display of he quantiy established
3.8 Chamber light switch on/off

- press hir
by presing the hafi key in remote mode.
3.9
Buzer silencing
-make sure no procedure is in progress
Spressed, the asocaraed effectis not
caused.
Pressing the key also causes the deactivation of the a coustic output and
the buzzer ouput.
Using the multifuction input, itis also possible to deactivate the buzzer,

Setting the type of functioning (with 1 measure-
ment input rather than 2)
ment input rather than
To access the procedure:
- make sure that the instrument is is stanctby state and that no proce-
- dure is in progress

To mootify the type of functioning:

VALUE \mid IEANNiNG
1 functioning with 1 measurement inout ldefault chame

2 (rabeel $\begin{aligned} & \text { fring } \\ & \text { funcioning with } 2 \text { measurement inputs top probe and }\end{aligned}$

- press Hfoor probe)

 the configuration parameters default value to be restored.
4.2.1 Setting the work set-point lonly if functioning with 4.2.1 Setting the work set-point lonly if functioning with
- make sure thaurement ine instrumentit is in on state and that no procedure is
- in prestress :": the lower part of the display will show spp", the upper

To ext the proctacedrure in an advance
- do not operate for 155 lany modifications will be saved.
It is asto possible to set the work setpoint via the SP parameter

if functioning with 2 measurement inputs)
To modify the top setpoint:
- mexe surutant the istrument is in on state and that no procedure is
in progeres

To modify the floor setpoint:
- pressem.
during the modif
Hess wisw during the enomitication of the top setponit: the lower part
of the display will show "SP2", the uper par
sonding
sprest

To 90 back to to exit the procedure.
To go back previous levess
- pressem severa times during the procedure.
To extit the procecure in anvance:

Setpoint via parameter SP2.
4.3 Seting the power distributed to the top and the
Sower distributed to the floor lonly if functioning
pewerg distributed too the flioor too tonly if functioning
with 1 measurement input)

coresponding value and a p proportioned un umber of bars
of the

do not operate for 15 S. the LED Will swith-off, after which the
instument will ext the procedure.

To modifit the power distributed to the floor:

- pressumed during the modicicaion of the power distibutued to the
top: the lower part of the display will show Poz', the

tis also possible to set the power distributed to the top through param-

Po2.	Setting the configuration parameters

4.4 Seting the con
To access the procecure:
make sur that the in:

- makcess the e procecure:
dure is in in oroteresess intument is in stand.by state and that no proce

press wa : the lower part of the display will show the corresponding

.
the upper part of the display will show "sp"; if
unctioning with 2 measurement inputs she if
per parto of the display will show spul.
To select a parameter:

pressumes : the lower part of the display will show the corresponding

cut the instrument power supply off after modification of
tut pe instrument powers supply off atter moditication of
4.5
Restore the defaut value of the contiguration pa-
rameters
- make sure that he instrument is in stand.by state and that no proce
dure is in procaress
make sure in
duress in progeress
ore and
press ${ }^{-1}$.

press ive or ${ }^{\text {Pb }}$
value with t 15 sto set 149.

on
- cut the instrument opwer supply off
To ext the procedure in andance:
 Make sure that the defautitvalue of the parameters is approPriate.
RAPID HEATING Ionly if functioning with 1 meas5.1 Prement input)
5.1 Preliminary considerations
The rapid heating allows to reach the work setpoint as quicky as The rapid heating allows to reach the work setpoint as quicky as
poosible, supplying 100\% of the power both to the top and the floor
 With benefit to suith-on in continuous model.
When the temperature of the chamber reaches the "work setpoint-

5.2 Rapid heating activation

 and that no procecure is in in pogrerest
if $c 2=2$, pass foem the the stand by state to the on state
 and that no procedure is in progressl or pass from the stand.by state
to the on state. If prameteier 2 is seta at, the function cannot be activated. When the function is in progress the upper part of the dispaly shows
F-F. atematel to the quantiy established with parameter $P 5$. F.F"
5.3 atemately to the quantity established with parameter P5.
Interuption of rapid heating in manual mode 5.3 intern

- make sure
- press
${ }_{6}^{6.1}$ sisnals

LED
W

If it is on, the top ouput and/or the floor output will be on
If tit ashes, the modification of the works setpoint, the top

supplies and indication regarding the power distributed to
the top Ifit thashes, the modification of the power distributed to the
top is in progeress
with the p procedure indicated in para-

supplies and indication regarding the power distributed to
int foor
fit fasses, the modification of the power distributed to the lior is is in progegress winth the procecaure indicicated in paraz

of measurement of the temperatures will be degrees (elisius (paramemeerer $P 2$)
 De degrees Fantenheit (parameter P2)
on stsanchby l LED

(1)
set

Ifitis on, the quantily shown by the lower part ofthe display will be the work
fioor setpoint
vantit displayed by the lower part of the display will
be the top setepooint value
-the uantity disilaled boy the lower part of the display will
be INDICATIONS Setpoint value

\section*{| 7.1 Indications |
| :---: |
| 7.1 |
| INDICAT |
| Inations |}

 the rapid
Ationing wit
Alarms
Alarms

8.1 A
$\begin{array}{c}\text { CODE } \\ \text { AL }\end{array}$

MEALING
$\begin{array}{l}\text { Chember temperature alamm (only if functioning with } 1 \\ \text { measurement input) }\end{array}$

- sheek parameteress Al and AB

Consequences:

- the alarm output will be a ativated
AL1
vated
to temperature alarm lonly if functioning with 2 measuree ment inputs)
Remedies:
- check the top temperature
- see parameeres $A 1$ and
- See prameteres $A 1$ and $A 3$
Conseuuness
- the alam outout will be activated
-the acoustics output and the buzzer output will be acti-
vated loor temperatur
rement inputs
Remediec
Remedies:
- check the floor temperature
- See
aramers
- see parameters $A 5$ and $A 7$
Consequences
the alrm output will be ativieted
the acoustics output and the buzzer output will be acti-
When the causes of the alarm have disappeared, the isstrument will g o
back to ormal funcioning. \quad ITTENAL DiAGNOSTICS
CODE Internal diagnostics
$\stackrel{\text { CODE }}{\text { Pr1 }}$
$\frac{\text { MEANING }}{\frac{\text { f funcioring with } 1 \text { measurement inout }}{\text { chamber probe elor }}}$
Chamber probe error
Remedies:
- See parameter Po
- check probe integrity
check the instrument:probe comne
hain consequencess:
Nain consequencess
- the top output and hefor output will be deactiveted
-the aocosics output and the buzzer output will be acti-
vated

puts: configurable polarity
con
mutifucion
and lifunction inputt for No,NC contact tpotential free contact, 5 V 1 mpl .
 Ithermocouple, from -99 to $9999^{\circ} \mathrm{C}$ Ifom -99 to $9999^{\circ} \mathrm{F} /$ for K thermo Couple.
Resolution: $1{ }^{\circ} \mathrm{C} / 1^{\circ} \mathrm{F}$
Rigitl
top (relay K1): 8 A res. © 250 VAC (contact in - top (relay K1): 8 A res. © © 250 VAC contact in
-exchange
- floor (relay K2): 8 Ares. © 250 VAC (contactin floor (relay K2): 8 Ares. © © 250 VAC (contactin
exhangel
alarm (relay K3): 8 A res. © $\mathbf{2} 250 \mathrm{VAC}$ (NO
 No contical) (relay K5): 8 A res. © 250 VAC (NO
 -on/stand-by (relay K6): 8 A res. © 250
(NO contact) The maximum current accepted on clamp 23 is 10 A .
Other outputs:
buzzer output 12 V . max. 20 ma ; the output is
 Serial port: port for the communication with the supensising syste thrrough a serial interface, via TLL, with MODBUS communcarion protocoll or with the programming key.

$\frac{\text { PARAM }}{\text { cosm }}$		max. Ju.m		NP	2 INPuTs	Various
		2				restraint between the power distributed to the top and power distributed to the floor $0=$ no restraint $=$ the modification of the power supplied to an output automatically causes the supply of the maximum power to the other $2=$ the modification of the power supplied to an output causes an automatic adaptation of the power supplied to the other such to guarantee that the sum of the two percentages is always 100
C1		999		80	not visible	cyce time for the top output and floor output switch-on, see also Pol and Po2
c2	0	3		${ }^{1}$	not visible	event that causes the activation of the rapid heating function $0=$ function cannot be activated $=\operatorname{press} \pi$ for 1 stm (make sure that the instrument is in on state and that no procedure is in progress) stand-by state to on state $=$ press s ster 1 s (make sure that the instrument is in on state and that no procedure is in progress) or pass from stand-by state to on state
${ }^{\text {c }}$		99	${ }^{\circ}{ }^{\circ} \mathrm{F}^{(1)}$	10	not visible	temperature of the chamber over which the rapid heating function is inter-
PARAM	MIN.	max.	Ј.M.	1 INPUT	2 INPUTS	TEMPERATURE ALARMS
${ }^{\text {AI }}$		999	${ }^{\circ} \mathrm{CPF}^{\circ} \mathrm{F}$ (1)	0	0	with 1 measurement input, temperature of the chamber above which the chamber temperature alarm is activated; with 2 measurement inputs, temperature of
A2	0	240	min	0	0	with 1 measurement input, chamber temperature alarm delay; with 2 measurement inputs, top temperature alarm delay
$\overline{\text { A3 }}$		2		0	0	with 1 measurement input, type of chamber temperature alarm delay; with 2 measurement inputs, type of top temperature alarm delay 0 = no alarm $1=$ absolute (i.e. Al) $2=$ with 1 measurement input, relative to the work set-point (i.e. "work set-point $+\mathrm{Al} "$); with 2 measurement inputs, relative to the top set-point (i.e. "top setpoint + Al")
$\overline{\text { A4 }}$	0	999	${ }^{\text {CoF }}$ (I)	not	0	floor temperature above which the floor temperature alarm is activated, se also A6 (4)
$\overline{\text { A5 }}$	0	240	nin	not visible	0	floor temperature alarm delay
${ }^{\text {Ab }}$				not visible	0	type of floor temperature alarm $0=$ no alarm $1=$ absolute (i.e. A4) $2=$ relative to the floor set-point (i.e. "floor set-point + A4")
PARAM	MIN.	max.	U.M.	1 INPUT	2 INPUTS	digTal INPUTS
$\overline{11}$				0	0	on/stand-by input polarity $0=1$ ive $1=$ noput $1=$ nontive input active
i5	0	2		0	0	effect caused by the activation of the multifunction input $0=$ no effect CAAMBERLGHT SWITCH-ONOFF- the activation of the input will cause the Chamber lightto switch-on and the successive activation will cause its switchoff $=\frac{\text { BUZZER. ACOUSTC OUTPUT AND BUZZER OUTPUT DEACTIVATION }- \text { the }}{\text { acivation of the inut wil Ause deen }}$鲑 utilies again)
${ }^{16}$	${ }^{0}$	'		${ }^{0}$	${ }^{0}$	ype of contact of the multifunction input $0=\mathrm{NO}$ (input active with closed contact) $1=$ NC (input active with open contact)
	MIN.		U.M.	1 INPUT	2 INPUTS	SERAL NETWORK (MODBUS)
		247		247	247	instrument adress
Lb		3		2	2	$\begin{aligned} & \text { baud rate } \\ & 0=2.40 \text { baud } \\ & 1=4.800 \text { baud } \\ & 2=9.0000 \text { baud } \\ & 3=19.200 \text { baud } \end{aligned}$
$\stackrel{\square}{\text { LP }}$	0	2		2	2	$\begin{aligned} & \text { parity } \\ & 0=\text { none (no parity) } \\ & 1=\text { oodd } \\ & 2=\text { even } \end{aligned}$

(1)
the unit of measurement depends on prameter $P 2$
(2)
set the parameters relative to the requlaters
$=$ odd
$z=$ even
(2) set the parameters relative to the regulators appropriately after modification of parameter $\mathbf{P} 2$
(3)
the value deepends on the tye of funcioning I| with 1
1 measurement ingut and 3 with 2 measurement inputid
the parameter differential is $10^{\circ} \mathrm{C} / 18^{\circ} \mathrm{F}$

