c-pro 3 NODE kilo CLOSE

Soluzione di controllo per unità close control

Manuale applicativo ver. 2.0a Dicembre 2019 | ITALIANO Codice 144CP3NKCI204

Importante

Leggere attentamente questo documento prima dell'installazione e prima dell'uso del dispositivo e seguire tutte le avvertenze; conservare questo documento con il dispositivo per consultazioni future.

Utilizzare il dispositivo solo nelle modalità descritte in questo documento; non utilizzare il dispositivo come dispositivo di sicurezza.

Smaltimento

Il dispositivo deve essere smaltito secondo le normative locali in merito alla raccolta delle apparecchiature elettriche ed elettroniche.

Indice

1	INTRODUZIONE	8
1.1	Introduzione	8
1.2	Tabella riassuntiva dei modelli disponibili, dei codici di acquisto e delle caratteristiche principali	9
2	DESCRIZIONE	11
2.1	Descrizione del controllore principale (c-pro 3 NODE kilo CLOSE)	11
2.2	Descrizione del driver per valvole di espansione elettroniche di tipo stepper bipolare (EVDRIVE03)	13
2.3	Descrizione dell'interfaccia utente remota (EPJgraph)	14
2.3.1	Descrizione del frontale	14
2.3.2	Descrizione del retro	15
3	DIMENSIONI E INSTALLAZIONE	16
3.1	Dimensioni e installazione del controllore principale (<i>c-pro 3 NODE kilo CLOSE</i>)	16
3.1.1	Dimensioni del controllore principale	16
3.1.2	Installazione del controllore principale	16
3.2	Dimensioni e installazione del driver per valvole di espansione elettroniche di tipo stepper bipolare (EVDRIVE03)	17
3.2.1	Dimensioni del driver per valvole di espansione elettroniche di tipo stepper bipolare	17
3.2.2	Installazione del driver per valvole di espansione elettroniche di tipo stepper bipolare	17
3.3	Dimensioni e installazione dell'interfaccia utente remota (EPJgraph)	18
3.4	Avvertenze per l'installazione	19
4	COLLEGAMENTO ELETTRICO	20
4.1	Configurazione dell'1/O	20
4.2	Esempio di schema elettrico	23
4.3	Collegamento elettrico EPJgraph	25
4.3.1	Modelli per installazione a pannello	25
4.3.2	Modelli per installazione a parete	26
4.4	Avvertenze per il collegamento elettrico	26
5	TASTI E SEGNALAZIONI	27
5.1	Led di segnalazione del controllore principale	27
5.2	Led di segnalazione del driver	
5.3	Tastiera dell'interfaccia utente	28
5.4	Led di segnalazione dell'interfaccia utente	29
5.5	Display dell'interfaccia utente locale o remota	29
5.6	Simboli ed icone visualizzabili sul display	30
6	VISUALIZZAZIONE PRIMARIA	31
6.1	Cenni preliminari	31
6.2	Schermata principale	31
6.3	Ventilazione	31
6.4	Acqua refrigerata	33
6.5	Free Cooling	33
6.6	Unità ibride con circuito primario ad acqua	33
6.7	Espansione diretta	34
6.8	Regolazione dei condensatori	35
6.9	Unità ibride con circuito secondario ad acqua	35
6.10	Riscaldamento	36
6.11	Umidificazione	37
6.12	Dry Cooler	37
7	MENU PRINCIPALE	37
7.1	Cenni preliminari	37
7.2	Set – Set-point	38
7.3	Rete – Stato della rete locale CANBUS	38
7.4	PAR – Parametri di regolazione	38
7.5	RTC - Orologio	39
7.6	- ALM – Allarmi attivi	39

7.7	LOG – Storico allarmi	
7.8	ORE – Ore di funzionamento	
7.9	INFO - Informazioni	40
8	USO DELL'UNITÀ	41
8.1	Lingua del software di regolazione	41
8.2	Blocco tasti	
8.3	Accensione dell'unità	
8.3.1	OFF da remoto e da sistema di supervisione / BMS MODBUS	
8.3.2	RE-START automatico per mancanza alimentazione	
8.3.3	Allarme di mancanza alimentazione	
8.4	Gestione delle serrande motorizzate	
8.5	Regolazione dei ventilatori di mandata	
8.5.1	Regolazione dei ventilatori modulanti a velocità fissa	
8.5.2	Regolazione dei ventilatori modulanti in proporzione alla richiesta di raffreddamento o riscaldamento	
8.5.3	Regolazione dei ventilatori modulanti a portata d'aria costante	
8.5.4	Regolazione dei ventilatori modulanti a pressione costante	
8.5.5	Gestione della velocità di partenza	
8.5.6	Gestione degli allarmi dei ventilatori	
8.5.7	Allarme sensore di pressione differenziale aria	
8.6	Regolazione di temperatura	
8.6.1	Tipologia di controllo della temperatura	
8.6.2	Impostazione dei limiti del set-point di temperatura	
8.6.3	Impostazione zona neutra di regolazione della temperatura	
864	Regolazione proporzionale della temperatura	46
865	Regolazione proporzionale + integrale della temperatura	46
866	Regolazione proporzionale + integrale + derivativa della temperatura	47
867	Allarmi di alta e bassa temperatura	
868	Gestione allarmi sonde di temperatura aria	48
8.7	Regolazione della temperatura limite	49
871		
872	Gestione dell'alta e hassa temperatura limite	
8.8	Perolazione di umidità	50
881	Configurazione sonde di umidità	50
882	Impostazione dei limiti del set-point di umidità	50
883	Impostazione zona neutra di regolazione dell'umidità	50
884	Regolazione proporzionale della deumidificazione	50
885	Deumidificazione parziale	51
886	Blocco della deumidificazione	51
887		51
888		51
0.0.0 8 8 0	Produzione di vanore durante le fasi di raffreddamento	
8 8 10	Regolazione pronorzionale dell'umidificazione	51
8 8 11	Scarico manuale dell'acqua dell'umidificatore	52
0.0.11 9.9.12	Cestione pre-lavaggio delle linee e del cilindro umidificatore	52
0.0.12 0.0.12	Allarmi di alta e bassa umidità	
8 8 1 <i>1</i>	Cestione allarmi conde di umidità aria	52
0.0.14 0.0.15		
0.0.15 g o	Percelazione unità ad espansione diretta	
0.7		
0.7.1		
0.7.Z	Rotazione automatica dei compressori ON-OFF	ນ3 ແກ
0.7.3 Q Q 1	Cestione compressori con regulazione ad inverter	
0.7.4	Pagalazione del surriscaldamente con valvala di espansione elettronice (cale consecuto)	
0.7.0	Regolazione dei sumscaldamento con valvola di espansione elettronica (SOIO Se presente)	
0.7.0	Costiono del de surriscaldamente (aggiungero i perametri relativi alle funzione)	
0.7./	Costione dei de-surriscaldamento (aggiuligere i parametri relativi alla funzione)	
0.7.0	Costione apertura anticipata uena varvoia ano start-up uer compressore	
0.7.7		

8.9.10	Gestione alto surriscaldamento (HiSH)	55
8.9.11	Gestione alta pressione di evaporazione dei compressori (MOP)	. 55
8.9.12	Gestione bassa pressione di evaporazione dei compressori (LOP)	55
8.9.13	Allarme bassa pressione di evaporazione	. 55
8.9.14	Gestione alta temperatura di scarico dei compressori	. 56
8.9.15	Allarme mancanza di compressione dei compressori	. 56
8.9.16	Allarme alta pressione di condensazione	56
8.9.17	Allarme protezione magnetotermica dei compressori	. 56
8.9.18	Gestione degli allarmi delle valvole elettroniche (se presenti)	. 56
8.10	Regolazione condensatori	. 57
8.10.1	Cenni preliminari	. 57
8.10.2	Regolazione proporzionale dei condensatori	. 57
8.10.3	Regolazione dei condensatori con AUTOSET-POINT	. 57
8.10.4	Gestione della richiesta di partenza	. 58
8.10.5	Gestione regolazione condensatori con sonda rotta	. 58
8.10.6	Gestione allarmi condensatori	. 58
8.11	Regolazione unità evaporanti per collegamento a moto-condensante remota	. 58
8.11.1	Cenni preliminari	. 58
8.11.2	Configurazione per il funzionamento con moto-condensante remota	. 59
8.11.3	Gestione allarme moto-condensante	. 59
8.12	Regolazione unità ad acqua refrigerata	. 59
8.12.1	Cenni preliminari	. 59
8.12.2	Gestione del circuito idrico ad acqua refrigerata	. 59
8.12.3	Rilevazione della temperatura del circuito idrico.	.59
8.12.4	Gestione allarmi sonde di temperatura	.59
8.13	Regolazione unità free cooling	. 60
8.13.1	Cenni preliminari	. 60
8 13 2	Regolazione sistema free cooling	60
8 13 3	Forzatura sistema free cooling	60
8.13.4	Gestione allrmi sonda di temperatura free cooling	. 60
8.14	Regolazione dry cooler	. 60
8 14 1	Cenni preliminari	60
8 14 2	Regolazione proporzionale dei dry cooler	61
8 14 3	Regolazione dei dry cooler con AutoSet-point	61
8 14 4	Gestione della richiesta di partenza	62
8 14 5	Regolazione cut-off ventilatori dry cooler	62
8.14.6	Gestione regolazione dry cooler con sonda di temperatura acqua rotta	. 62
8 14 7	Gestione allarmi dry cooler	62
8 15	Gestione nomna acqua	62
8 15 1	Cenni preliminari	62
8 15 2	Configurazione gestione pompa acqua	62
8 15 3	Gestione ritardo spegnimento pompa acqua	62
8 15 4	Gestione allarme pompa acqua	63
8 16	Regolazione unità ibride	63
8 16 1	Cenni preliminari	63
8 16 2	Regolazione sistema ibrido ad acqua	63
8 16 3	Regolazione sistema ibrido ad espansione diretta	63
8.16.4	Forzatura fonte di raffreddamento secondaria	. 63
8.17	Regolazione componenti riscaldanti	. 63
8.17.1	Cenni preliminari	. 63
8.17.2	Riscaldamento con batterie elettriche a stadi	. 64
8.17.3	Riscaldamento con batterie elettriche o ad acqua modulanti	. 64
8.17.4	Gestione allarmi batterie elettriche	. 64
8.18	Ingressi digitali configurabili	. 65
8.18.1	Cenni preliminari	. 65
8.18.2	Gestione ingressi digitali configurabili	. 65
8.19	Uscite digitali configurabili	. 66

8.19.1	Cenni preliminari	. 66
8.19.2	Gestione uscite digitali configurabili	. 66
8.20	Gestione allarmi componenti interni	. 67
8.20.1	Gestione allarme filtri aria	. 67
8.20.2	Gestione allarme presenza acqua / pompa di scambio condensa	. 67
8.20.3	Gestione allarme fumo/fuoco	. 67
8.20.4	Gestione allarme generico lieve e grave	. 67
8.21	Gestione della calibrazione delle sonde	. 67
8.22	Gestione della comunicazione seriale MODBUS RTU SLAVE	. 67
8.23	Modifica della password di accesso	. 68
8.24	Cancellazione dello storico allarmi e delle ore di funzionamento	. 68
8.24.1	Cancellazione dello storico allarmi	. 68
8.24.2	Cancellazione delle ore di funzionamento	. 68
9	RETE MODBUS MASTER DI CONTROLLO DEI COMPONENTI	. 69
91	Cenni preliminari	69
9.2	Indirizzamento dei dispositivi della rete MODBUS master	69
921	Auto-indirizzamento dei ventilatori in caso di sostituzione	70
10		71
10 1		71
10.1		71
10.2		. / 1
10.3		. 72
10.4		. 72
10.4.1	Cenni preliminari	. 72
10.4.2	Rotazione automatica delle unita	. 72
10.4.3	Attivazione delle unita in stand-by in caso di allarme	. 72
10.4.4	Gestione del sistema di supporto alla regolazione di temperatura	. 72
10.5	Sistema di attivazione con On/Off dinamico	. 73
10.5.1	Cenni preliminari	. 73
10.5.2	Ingresso in rete delle unità	. 73
10.6	Sistema di set-point dinamico	. 73
10.7	Sistema di gestione delle medie di temperatura, umidità e pressione aria	. 73
10.7.1	Esclusione dal calcolo della media	. 73
10.8	Gestione allarme mancanza di comunicazione rete locale	. 73
11	PARAMETRI DEL SOFTWARE DI REGOLAZIONE E LORO MODIFICA	. 74
11.1	Accesso ai menu protetti da password	. 74
11.1.1	Inserimento della password di login	. 74
11.2	Accesso ai menu dei parametri di regolazione	. 74
11.3	Modifica dei parametri di regolazione	. 74
11.4	Uscita dai gruppi, dai menu e dal menu principale	. 74
12	ELENCO DEI PARAMETRI DI CONFIGURAZIONE	. 75
12.1	Menu set-point: modifica dei set-point	. 75
12.2	Setup utente: impostazioni del programma di funzionamento	. 75
12.3	Loop setup costruttore: configurazione dei componenti	. 78
12.4	Loop setup avanzato: configurazione dei componenti	. 86
13	GESTIONE DEGLI ALLARMI DELL'UNITÀ	. 96
13.1	Segnalazione, verifica e rimozione delle condizioni di allarme	. 96
13.1.1	Segnalazione presenza allarmi	. 96
13.1.2	Verifica della condizione d'allarme	. 96
13.1.3	Rimozione di una condizione d'allarme	. 96
14	DESCRIZIONE DEGLI ALLARMI DELL'UNITÀ	. 96
15	SUPERVISIONE TRAMITE PROTOCOLLO MODBUS RTU SLAVE	104
16	RICERCA ED ELIMINAZIONE GUASTI	105
16.1	L'unità non si avvia	105
16.2	Letture errate dei segnali in ingresso	105
16.3	Dubbia segnalazione di allarme da ingresso digitale	105
16.4	Mancata chiusura di un'uscita digitale	105
16 5	Assenza delle uscite analogiche	105
10.5		100

16.6	II c-pro 3 NODE kilo CLOSE attiva la funzione di watch-dog	105
16.7	La connessione seriale con supervisore/BMS non funziona	105
16.8	La connessione in rete locale non funziona	106
16.9	La connessione MODBUS master non funziona	106
17	ACCESSORI	107
17.1	Interfaccia seriale RS-485/USB EVIF20SUXI	107
17.1.1	Cenni preliminari	107
17.2	Chiave USB da 4 GB EVUSB4096M	107
17.2.1	Cenni preliminari	107
17.3	Chiave di programmazione EVKEY10	107
17.3.1	Cenni preliminari	107
17.4	Modulo di backup	108
17.4.1	Cenni preliminari	108
17.5	Kit di collegamento CJAV35	108
17.5.1	Cenni preliminari	108
17.6	Kit di collegamento CJAV23	108
17.6.1	Cenni preliminari	108
17.7	Kit di collegamento CJAV25	109
17.7.1	Cenni preliminari	109

1 INTRODUZIONE

1.1 Introduzione

c-pro 3 NODE kilo CLOSE è una soluzione di controllo per la gestione di unità close control a espansione diretta (monocircuito e bicircuito a 1 compressore per ciascun circuito) o ad acqua refrigerata.

È composta da:

- un controllore principale (*c-pro 3 NODE kilo CLOSE*, disponibile in versione cieca)
- un driver per valvole di espansione elettroniche di tipo stepper bipolare per ciascun circuito (EVDRIVE03, disponibile con interfaccia utente integrata o in versione cieca)
- un'interfaccia utente remota (EPJgraph).

La soluzione è in grado di gestire sia compressori di tipo "onoff" che a portata variabile; è inoltre in grado di gestire sia ventilatori di tipo "on-off" che modulanti.

Dispone della gestione della fonte secondaria, del dry cooler e del "free cooling".

La varietà di porte di comunicazione disponibili (di tipo RS-485, CAN, USB ed Ethernet) e di protocolli di comunicazione supportati favoriscono l'integrazione del controllore in sistemi. L'installazione del controllore principale è prevista su guida DIN, in un quadro di controllo.

1.2 Tabella riassuntiva dei modelli disponibili, dei codici di acquisto e delle caratteristiche principali

La seguente tabella illustra i modelli disponibili, i codici di acquisto e le caratteristiche principali di *c-pro 3 NODE kilo CLOSE* e di EVDRIVEO3.

modelli disponibili >	c-pro 3 NODE kilo CLOSE	EVDR	IVE03
codici di acquisto >	EPK4BHQ1CC	EPD4BC3	EPD4DF3
Versione			
cieca	•	•	
built-in LCD (visualizzatore grafico LCD monocolore da 128 x 64 pixel)			•
Connessioni			
morsettiere estraibili a vite	•	•	•
Alimentazione			
24 VAC/DC non isolata	•	•	•
Porte di comunicazione			
TTL, di programmazione		•	•
RS-485 MODBUS master/slave	•		
RS-485 MODBUS slave	•	•	•
CAN CANBUS	•	•	•
USB	•		
Ethernet (MODBUS TCP, Web Server)	•		
Altre caratteristiche			
orologio	•		

Per ulteriori modelli rivolgersi alla rete vendita EVCO.

La seguente tabella illustra i modelli disponibili, i codici di acquisto e le caratteristiche principali di EPJgraph.

	modelli disponibili >	EPJg	raph
	codici di acquisto >	EPJG900X4	EPJG900X4VW
Interfaccia utente			
display grafico LCD a colori + 6 tasti		•	•
Tipo di installazione			
a pannello		•	
a parete			•
Connessioni			
morsettiere fisse a vite			•
morsettiere estraibili a vite		•	
Alimentazione			
24 VAC/12 30 VDC non isolata		•	•
Porte di comunicazione			
CAN CANBUS		•	•
Altre caratteristiche			
buzzer di allarme		•	•

Per ulteriori modelli rivolgersi alla rete vendita EVCO.

2 DESCRIZIONE

2.1 Descrizione del controllore principale (*c-pro 3 NODE kilo CLOSE*)

Il seguente disegno illustra il layout del controllore principale.

La seguente tabella illustra il significato delle parti del controllore principale.

PARTE	SIGNIFICATO
1	uscite digitali K1 e K2
2	uscite digitali K3, K4, K5 e K6
3	uscita digitale K7
4	porta Ethernet MODBUS TCP, Web Server
5	uscita digitale K11
6	ingressi digitali 1 5
7	uscite analogiche 1 3
8	porta USB
9	ingressi analogici 1 6
10	micro switch per l'inserimento della terminazione della porta CAN CANBUS, della porta RS-485 MODBUS master/slave e della porta RS-485 MODBUS slave
11	porte RS-485 MODBUS slave, RS-485 MODBUS master/slave e CAN CANBUS
12	alimentazione
13	ingressi analogici 7 10 e uscite analogiche 4 6

14	ingressi digitali 6 13
15	LED di segnalazione
16	uscite digitali K8 e K9
17	uscita digitale K10

2.2 Descrizione del driver per valvole di espansione elettroniche di tipo stepper bipolare (EVDRIVE03)

Il seguente disegno illustra il layout del driver per valvole di espansione elettroniche di tipo stepper bipolare.

La seguente tabella illustra il significato delle parti del controllore principale.

PARTE	SIGNIFICATO
1	uscita digitale K1
2	ingressi analogici e ingressi digitali a contatto pulito
3	porta CAN CANBUS
4	micro switch per l'inserimento della terminazione della porta CAN CANBUS
5	visualizzatore e tastiera (non disponibile nelle versioni cieche)
6	riservato
7	uscita per motore di tipo stepper bipolare
8	porta TTL MODBUS
9	alimentazione
10	porta RS-485 MODBUS slave
11	micro switch per l'inserimento della terminazione della porta RS-485 MODBUS slave
12	LED di segnalazione
13	ingresso digitale a 230 VAC

2.3 Descrizione dell'interfaccia utente remota (EPJgraph)

2.3.1 Descrizione del frontale

Il seguente disegno illustra l'aspetto del frontale dell'interfaccia utente remota.

La seguente tabella illustra il significato delle parti del frontale del dispositivo.

PARTE	SIGNIFICATO
1	tasto "ON/OFF"
2	TASTO "LEFT"
3	tasto "UP"
4	tasto "DOWN"
5	tasto "RIGHT"
6	tasto "ENTER"
7	display

2.3.2 Descrizione del retro

Il seguente disegno illustra l'aspetto del retro dell'interfaccia utente remota.

La seguente tabella illustra il significato del retro del dispositivo.

PARTE	SIGNIFICATO
1	alimentazione e porta CAN CANBUS
2	micro switch per l'inserimento della terminazione della porta CAN CANBUS
3	riservato

3 DIMENSIONI E INSTALLAZIONE

3.1 Dimensioni e installazione del controllore principale (*c-pro 3 NODE kilo CLOSE*)

3.1.1 Dimensioni del controllore principale

Il seguente disegno illustra le dimensioni del controllore principale (8 moduli DIN); le dimensioni sono espresse in mm (in).

3.1.2 Installazione del controllore principale

L'installazione è prevista su guida DIN 35,0 x 7,5 mm (1,377 x 0,295 in) o 35,0 x 15,0 mm (1,377 x 0,590 in), in un quadro di controllo.

Per installare il controllore principale operare nel modo indicato nel seguente disegno.

Per rimuovere il controllore principale rimuovere prima eventuali morsettiere estraibili a vite inserite nella parte bassa, quindi operare sulla clip per la guida DIN con un cacciavite nel modo indicato nel seguente disegno.

Per installare nuovamente il controllore principale premere prima a fondo la clip della guida DIN.

3.2 Dimensioni e installazione del driver per valvole di espansione elettroniche di tipo stepper bipolare (EVDRIVE03)

3.2.1 Dimensioni del driver per valvole di espansione elettroniche di tipo stepper bipolare

Il seguente disegno illustra le dimensioni del driver per valvole di espansione elettroniche di tipo stepper bipolare (4 moduli DIN); le dimensioni sono espresse in mm (in).

3.2.2 Installazione del driver per valvole di espansione elettroniche di tipo stepper bipolare Operare come indicato per il controllore principale.

3.3 Dimensioni e installazione dell'interfaccia utente remota (EPJgraph)

Il seguente disegno illustra le dimensioni dei modelli di interfaccia utente per installazione a pannello (con alette elastiche di ritenuta); le dimensioni sono espresse in mm (in). Lo spessore di un pannello metallico deve essere compreso tra 0,8 e 1,5 mm (1/32 e 1/16 in), quello di un pannello plastico tra 0,8 e 3,4 mm (1/32 e 1/8 in).

Il seguente disegno illustra le dimensioni dei modelli di interfaccia utente per installazione a parete (con tasselli e viti di fissaggio) o nelle più comuni scatola da incasso (con viti di fissaggio); le dimensioni sono espresse in mm (in).

1. Sganciare il guscio posteriore dal frontale con l'aiuto di un cacciavite e dell'apposita sede.

- 2.1 In caso di installazione a parete:
- 2.1.1 Appoggiare il guscio posteriore alla parete in un punto adeguato a far passare i cavi di collegamento attraverso l'apposita apertura.
- 2.1.2 Utilizzare le asole del guscio posteriore come guida per eseguire 4 fori di un diametro adeguato al tassello. Si consiglia di utilizzare tasselli diametro 5,0 mm (3/16 in).
- 2.1.3 Inserire i tasselli nei fori eseguiti nella parete.
- 2.1.4 Fissare il guscio posteriore alla parete con 4 viti.
 - Si consiglia di utilizzare viti a testa svasata piana.
- 2.2 In caso di installazione in scatola da incasso, fissare il guscio posteriore alla scatola con 4 viti.Si consiglia di utilizzare viti a testa svasata piana.
- 3. Eseguire il collegamento elettrico nel modo illustrato nel capitolo *COLLEGAMENTO ELETTRICO* senza dare alimentazione al dispositivo.
- 4. Fissare il frontale del dispositivo al guscio posteriore.

3.4 Avvertenze per l'installazione

- accertarsi che le condizioni di lavoro del dispositivo (temperatura di impiego, umidità di impiego, ecc.) rientrino nei limiti riportati; nel Manuale hardware.
- non installare il dispositivo in prossimità di fonti di calore (resistenze, condotti dell'aria calda, ecc.), di apparecchi con forti magneti (grossi diffusori, ecc.), di luoghi soggetti alla luce solare diretta, pioggia, umidità, polvere eccessiva, vibrazioni meccaniche o scosse
- in conformità alle normative sulla sicurezza, la protezione contro eventuali contatti con le parti elettriche deve essere assicurata mediante una corretta installazione del dispositivo; tutte le parti che assicurano la protezione devono essere fissate in modo tale da non poter essere rimosse senza l'aiuto di un utensile.

4 COLLEGAMENTO ELETTRICO

4.1 Configurazione dell'I/O

La seguente tabella illustra un esempio di configurazione pronta per l'utilizzo per unità close control bicircuito a espansione diretta o ad acqua refrigerata, con un driver per valvole di espansione elettroniche di tipo stepper bipolare per ciascun circuito (EVDRIVEO3) e ventilatori modulanti; è possibile personalizzare la configurazione dell'1/O.

		c-pro 3 NODE kilo CLOSE	EVDRIVE03 circuito 1	EVDRIVE03 circuito 2	
Ingressi a	nalogici				
AI1	pressione aria di ripresa				
AI2	umidità aria di ripresa	•			
AI3	temperatura aria di ripresa	•			
AI4	temperatura aria di mandata	•			
A15	temperatura acqua di ripresa	•			
A16	temperatura di scarico circuito 1				
AI7	pressione di condensazione circuito 1				
A18	temperatura di scarico circuito 2				
A19	pressione di condensazione circuito 2				
AI1	temperatura di scarico circuito 1		•		
AI2	pressione di condensazione circuito 1		•		
AI3	temperatura di aspirazione circuito 1		•		
A14	pressione di evaporazione circuito 1		•		
AI1	temperatura di scarico circuito 2			•	
A12	pressione di condensazione circuito 2			•	
A13	temperatura di aspirazione circuito 2			•	
AI4	pressione di evaporazione circuito 2			•	
Ingressi digitali					
DI1	fine corsa serranda	•			
DI2	sensore pulizia filtro				

DI3	spegnimento			
DI4	sensore allagamento	•		
DI5	configurabile			
DI6	configurabile			
DI7	configurabile			
DI8	configurabile			
DI9	configurabile			
DI1	protezione termica compressore circuito 1		•	
DI2	pressostato di massima circuito 1		•	
DI3	pressostato di minima circuito 1		•	
DI1	protezione termica compressore circuito 2			•
DI2	pressostato di massima circuito 2			•
DI3	pressostato di minima circuito 2			•
Uscite and	alogiche			
AO1	ventilatore di mandata	•		
AO2	valvola miscelatrice batteria di raffrescamento/FC/Inverter	•		
AO3	valvola miscelatrice batteria di riscaldamento (ad acqua)/Batteria elettrica modulante	•		
AO4	valvola miscelatrice acqua refrigerata unità ibride	•		
AO5	dry cooler/condensatore 1	•		
AO6	Umidificatore/condensatore 2	•		
Uscite dig	itali			
DO1	abilitazione ventilatore di mandata	•		
DO2	serranda	•		
DO3	stadio 1 batteria di riscaldamento (elettrica)	•		
DO4	stadio 2 batteria di riscaldamento (elettrica)	•		

DO5	configurabile	Х		
DO6	configurabile	•		
DO7	configurabile	•		
DO8	configurabile	•		
DO9	configurabile	•		
DO1	compressore circuito 1		•	
DO1	compressore circuito 2			•

4.2 Esempio di schema elettrico

Il seguente disegno illustra un esempio di schema elettrico per unità close control bicircuito a espansione diretta o ad acqua refrigerata, con un driver per valvole di espansione elettroniche di tipo stepper bipolare per ciascun circuito (EVDRIVEO3) e ventilatori modulanti.

4.3 Collegamento elettrico EPJgraph

4.3.1 Modelli per installazione a pannello

Significato dei connettori

Connettore 1

N.	DESCRIZIONE
1	riferimento - porta CAN
2	riferimento + porta CAN
3	alimentazione dispositivo (24 VAC/12 30 VDC); se il dispositivo è alimentato in corrente continua, collegare il terminale negativo
4	alimentazione dispositivo (24 VAC/12 30 VDC); se il dispositivo è alimentato in corrente continua, collegare il terminale positivo

Non alimentare un altro dispositivo con lo stesso trasformatore.

Connettore 2

Riservato EVCO.

Micro-switch per inserire la resistenza di terminazione della porta CAN.

Inserimento della resistenza di terminazione della porta CAN

Per inserire la resistenza di terminazione della porta CAN, posizionare il micro-switch 2 in posizione ON. Il micro-switch 1 è riservato EVCO.

Il micro-switch è posizionato sul retro del dispositivo (rimuovere prima il guscio posteriore dal frontale).

4.3.2 Modelli per installazione a parete

Significato dei connettori

Connettore 1

N.	DESCRIZIONE
1	riferimento - porta CAN
2	riferimento + porta CAN
3	alimentazione dispositivo (24 VAC/12 30 VDC); se il dispositivo è alimentato in corrente continua, collegare il terminale negativo
4	alimentazione dispositivo (24 VAC/12 30 VDC); se il dispositivo è alimentato in corrente continua, collegare il terminale positivo

Non alimentare un altro dispositivo con lo stesso trasformatore.

Connettore 2

Riservato EVCO.

Micro-switch per inserire la resistenza di terminazione della porta CAN.

Inserimento della resistenza di terminazione della porta CAN

Per inserire la resistenza di terminazione della porta CAN, posizionare il micro-switch 2 in posizione ON. Il micro-switch 1 è riservato EVCO.

Il micro-switch è posizionato sul retro del dispositivo (rimuovere prima il guscio posteriore dal frontale).

4.4 Avvertenze per il collegamento elettrico

- non operare sulle morsettiere del dispositivo utilizzando avvitatori elettrici o pneumatici
- se il dispositivo è stato portato da un luogo freddo a uno caldo, l'umidità potrebbe condensare all'interno; attendere circa un'ora prima di alimentarlo
- accertarsi che la tensione di alimentazione, la frequenza elettrica e la potenza elettrica del dispositivo corrispondano a quelle dell'alimentazione locale; si veda il Manuale hardware"
- scollegare l'alimentazione del dispositivo prima di procedere con qualunque tipo di manutenzione
- collegare il dispositivo a una rete RS-485 di dispositivi utilizzando un doppino twistato
- collegare il dispositivo a una rete CAN di dispositivi utilizzando un doppino twistato
- collocare i cavi di potenza il più lontano possibile da quelli di segnale
- non utilizzare il dispositivo come dispositivo di sicurezza
- per le riparazioni e per informazioni riguardanti il dispositivo rivolgersi alla rete vendita EVCO.

5 TASTI E SEGNALAZIONI

5.1 Led di segnalazione del controllore principale

Sul controllore principale sono presenti dei LED con particolari funzioni, come riportato nella seguente tabella.

LED DI SEGNALAZIONE			
NOME	COLORE	DESCRIZIONE	
ON	Verde	 LED alimentazione: Se acceso, il dispositivo è alimentato Se spento, il dispositivo non è alimentato 	
RUN	Verde	 LED funzionamento: Se acceso, il software applicativo è in esecuzione Se spento, il software applicativo non è in esecuzione 	
	Rosso	 LED allarme di sistema: Se acceso, è in corso un allarme di sistema con reset via software applicativo Se lampeggia molto lentamente, è in corso un accesso in memoria flash esterna Se lampeggia lentamente, è in corso un allarme di sistema con reset automatico Se lampeggia velocemente, è in corso un allarme di sistema con reset manuale Se è spento, non sarà in corso alcun allarme di sistema 	
CAN	Rosso	 LED comunicazione CANbus: Se acceso, la comunicazione CANbus non è stata stabilita Se lampeggia lentamente, la comunicazione CANbus presenta errori di comunicazione Se lampeggia velocemente, la comunicazione CANbus è corretta Se è spento, non è in corso alcuna comunicazione CANbus 	
L1	-	Non utilizzato	

5.2 Led di segnalazione del driver

Sul driver sono presenti dei LED con particolari funzioni, come riportato nella seguente tabella.

LED DI SEGNALAZIONE			
NOME	OME COLORE DESCRIZIONE		
ON	Verde	LED alimentazione: • Se acceso, il dispositivo è alimentato • Se spento, il dispositivo non è alimentato	
STEP 1	Verde	 LED uscita motore passo-passo: Se è acceso, la valvola si chiude completamente Se lampeggia lentamente, la valvola si apre completamente Se lampeggia velocemente, la valvola è in movimento Se è spento, la valvola è ferma 	

LED DI SEGNALAZIONE			
NOME	COLORE	DESCRIZIONE	
STEP 2	Verde	 LED funzionamento : Se acceso, Il controllo del surriscaldamento è in esecuzione Se spento, Il controllo del surriscaldamento non è in esecuzione 	
	Rosso	 LED allarme: Se è acceso, è in corso un allarme Se lampeggia lentamente, è necessario disabilitare/abilitare il funzionamento del dispositivo, affinché la modifica della configurazione possa essere efficace Se lampeggia velocemente, è necessario spegnere/accendere l'alimentazione del dispositivo, affinché la modifica della configurazione possa essere efficace Se è spento, non è in corso un allarme 	
сом	Verde	 LED comunicazione: Se acceso, la comunicazione è in allarme e il dispositivo è bloccato Se lampeggia lentamente, la comunicazione presenta errori Se lampeggia velocemente, la comunicazione è in allarme e il dispositivo è in funzionamento stand-alone Se è spento, la comunicazione è corretta 	

5.3 Tastiera dell'interfaccia utente

Sull'interfaccia utente sono presenti dei tasti con particolari funzioni, come riportato nella seguente tabella.

TASTO	NOME	DESCRIZIONE
	ESC	Se premuto, permette l'uscita dai menu e dalla modifica parametri.
	ON-OFF	Se premuto a lungo, permette l'accensione e lo spegnimento dell'unità.
	LEFT	Se premuto, permette di scorrere verso sinistra le pagine di stato dell'unità.
1 1	ALARM	Se premuto a lungo, permette di accedere al menu allarmi attivi.
^	N UP Se premuto, permette di scorrere verso l'alto le pagine associate a uno stesso grupp cursore si trova su di un campo d'impostazione, permette di incrementare il valore.	
~	DOWN Se premuto, permette di scorrere verso il basso le pagine associate a uno stesso grup cursore si trova su di un campo d'impostazione, permette di diminuire il valore.	
	RIGHT	Se premuto, permette di scorrere verso destra le pagine di stato dell'unità.
1 1	HOME	Se premuto a lungo, permette il ritorno alla pagina Home.

ок	ENTER	Se premuto, permette la modifica di un parametro e di confermare il valore impostato. All'interno del menu allarmi attivi se premuto permette di scorrere gli allarmi e, se premuto a lungo, permette di cancellare gli allarmi attivi.
	MENU	Se premuto a lungo, permette di accedere alla pagina di Menu principale.
\rightarrow	UP + DOWN	Se premuti a lungo, permettono di sbloccare la tastiera del terminale utente.

5.4 Led di segnalazione dell'interfaccia utente

Sull'interfaccia utente sono presenti dei LED con particolari funzioni, come riportato nella seguente tabella.

TASTO	COLORE	DESCRIZIONE
Ċ	Verde	 LED funzionamento: Se acceso, l'unità è ON Se lampeggia, l'unità è spenta da remoto, spenta per allarme grave o in Stand-by (Rete locale) Se spento, l'unità è OFF
	Rosso	 LED allarme: Se è acceso, è in corso un allarme che è già stato visualizzato Se lampeggia, è in corso un nuovo allarme Se è spento, non è in corso un allarme
4	Arancione	LED alimentazione: • Se acceso, il dispositivo è alimentato • Se spento, il dispositivo non è alimentato

5.5 Display dell'interfaccia utente locale o remota

L'interfaccia utente equipaggia un display grafico LCD monocolore (nero con retro-illuminazione a LED bianchi) da 128 x 64 pixel, che permette di visualizzare le informazioni relative al software di gestione delle unità.

Le informazioni relative alla gestione dell'unità sono organizzate secondo il seguente ordine:

- 1. RAMO PRINCIPALE: Permette un rapido accesso allo stato generale delle unità. Al suo interno è possibile visualizzare lo stato di tutti i componenti installati nell'unità, o da essa controllati.
- 2. MENU PRINCIPALE: Permette di accedere ai MENU di gestione del software. I MENU suddividono i parametri per categorie al fine di facilitare l'uso da parte dell'utente.
- MENU: All'interno del menu principale vi sono vari MENU suddivisi come segue. Ogni MENU può contenere al suo interno 3. dei GRUPPI DI PARAMETRI, e ne permette la visualizzazione o la modifica.
 - MENU APERTI: mostrano gli allarmi, le ore di funzionamento dei dispositivi, l'ora e la data, permettono l'impostazione dei Set-point di temperatura e umidità e la regolazione dell'orologio.
 - MENU PROTETTI DA PASSWORD: permettono l'impostazione dei parametri di regolazione e di configurazione . dell'unità.
- 4. GRUPPI DI PARAMETRI: I PARAMETRI sono raccolti in appositi GRUPPI, per facilitare l'accesso e la modifica degli stessi.

5.6 Simboli ed icone visualizzabili sul display

All'interno delle pagine del software vengono utilizzate diverse tipologie di icone. Nella seguente tabella viene riportato il significato delle icone.

Icone software					
	SS		\bigcirc		
Serranda in apertura	Ventilatori accesi	Componente fredda attiva	Compressore modulante in funzione		
	7				
Compressore 1 in funzione	Compressore 2 in funzione	2 compressori in funzione	Componente calda attiva		
555 A	555 AA1	\$\$\$\$ \$\$\$2	\$\$\$.		
Resistenza modulante in funzione	Stadio 1 resistenza in funzione	Stadio 2 resistenza in funzione	Stadio 1+2 resistenza in funzione		
\Diamond^{\star}	\Diamond	fc	[کر]		
Umidificatore in funzione	Deumidificazione in funzione	Free cooling in funzione	Fonte primaria unità ibride in funzione		
[حر]	Ļ				
Fonte secondaria unità ibride in funzione	Allarme attivo	Blocco tasti attivo	J		

6 VISUALIZZAZIONE PRIMARIA

6.1 Cenni preliminari

Questo gruppo di pagine rappresenta la visualizzazione primaria del software di regolazione. L'accesso alle pagine avviene semplicemente premendo i tasti **LEFT** (()) e **RIGHT** (). I parametri relativi a componenti non installati non saranno visualizzati, pertanto è possibile che alcune pagine non risultino visibili.

6.2 Schermata principale

Questa pagina rappresenta la visualizzazione primaria del software. All'interno di questa pagina sarà possibile visualizzare:

- La data e l'ora impostati.
- La temperatura di ripresa (se presente).
- La temperatura di mandata (se presente).
- L'umidità (se presente).
- Lo stato dell'unità.
- La presenza di un allarme attivo.
- Le icone dei principali componenti attivi (vedi capitolo precedente).

6.3 Ventilazione

Le pagine di stato della ventilazione hanno visualizzazioni diverse a seconda del tipo di regolazione impostata. Se attiva la regolazione a velocità fissa verrà visualizzato lo stato di ogni ventilatore presente nell'unità:

- La velocità del ventilatore in percentuale.
- Il numero di ventilatori attivi

Se attiva la regolazione in proporzione alla regolazione di raffreddamento o riscaldamento, oltre allo stato di ogni ventilatore presente nell'unità, verranno visualizzati:

- La temperatura controllata.
- L'umidità controllata (se presente controllo umidità).
- La velocità del ventilatore in percentuale
- Il numero di ventilatori attivi.

VENTILAT	ION	ŚŚ
Temperature:	20.4 °C	
Humidity:	47 %	
Inverter:	55⊨%	
Active fans:	4	

Se attiva la regolazione a portata aria costante, oltre allo stato di ogni ventilatore presente nell'unità, verranno visualizzati:

- La portata aria attuale in m3/h.
- La velocità del ventilatore in percentuale.
- Il numero di ventilatori attivi.

ION		85
1981	m³/h	
55	%	
4		
	1981 55 4	1981 m³/h 55 % 4

Se attiva la regolazione a pressione aria costante, oltre allo stato di ogni ventilatore presente nell'unità, verranno visualizzati:

- La pressione aria attuale in Pa.
- La velocità del ventilatore in percentuale.
- Il numero di ventilatori attivi.

VENTILA	TION		ŚŚ
Drogguro	10	Do	
Pressure:	19	Ра	
Inverter:	55	%	
Active fans:	4		

6.4 Acqua refrigerata

Le pagine di stato della regolazione ad acqua refrigerata possono essere diverse a seconda del tipo di accessori presenti nell'unità. Sarà possibile quindi visualizzare:

- La temperatura controllata.
- L'umidità controllata (se presente controllo umidità).
- Il valore di temperatura dell'acqua in ingresso (se presente).

CHILLED V	VATER	*
- .		
Temperature	20.4 °C	
Humidity:	47 %	
T water IN:	13.8 °C	
Valve:	44 %	

6.5 Free Cooling

Nelle unità free cooling verrà visualizzata una pagina di stato del circuito di free cooling ed, a seguire, le pagine del circuito ad espansione diretta (vedi capitoli successivi). Nella pagina del free cooling verranno visualizzati:

- La temperatura controllata.
- L'umidità controllata (se presente controllo umidità).
- La temperatura di free cooling.
- La percentuale di free cooling.

FREE COC	DLING	fc
Temperature:	20.4 °C	
Humidity:	4 7 %	
T water IN:	13.8 °C	
Free Cooling:	100 %	

6.6 Unità ibride con circuito primario ad acqua

Nelle unità ibride con circuito primario ad acqua verrà visualizzata una pagina di stato del circuito primario ed, a seguire, le pagine del circuito secondario ad espansione diretta o ad acqua (vedi capitoli successivi). Nella pagina del circuito primario ad acqua verranno visualizzati:

- La temperatura controllata.
- L'umidità controllata (se presente controllo umidità).
- La temperatura dell'acqua in ingresso.
- La richiesta di raffreddamento.
- La richiesta di deumidificazione (se presente controllo umidità).
- La percentuale di apertura della valvola acqua del circuito primario

SOURCE 1			
Temperature:	20.4 °C		
Humidity:	47 %		
T water IN:	13.8 °C		
Valve:	100 %		

6.7 Espansione diretta

Le pagine di stato della regolazione ad espansione diretta possono essere diverse a seconda del tipo di accessori, e del numero di circuiti frigoriferi, presenti nell'unità. Sarà possibile quindi visualizzare:

- La temperatura controllata
- L'umidità controllata (se presente controllo umidità).
- La richiesta di raffreddamento.
- Lo stato di attivazione dei compressori.
- La velocità del compressore in percentuale.

ESPANSION	E DIRETTA
Temperatura:	20.4 °C
Umidità:	47 %
Raffreddam.:	68 %
Inverter:	36 %
Stato com	pressori:
C1: ON	🔁 C2: ON

Parametri di funzionamento del circuito frigorifero (bassa pressione):

- La pressione di evaporazione attuale.
- La temperatura di evaporazione attuale.
- La temperatura di aspirazione del compressore.
- Il surriscaldamento attuale.

COMPRES	SOR 🔂
P evaporat.:	4.50 Bar
T evaporat.:	-2.8 °C
T suction:	-8.0 °C
Superheat:	5.2 K

Parametri di funzionamento del circuito frigorifero (alta pressione):

- La temperatura di scarico del compressore.
- La pressione di condensazione attuale.
- La temperatura di condensazione attuale.

COMPRESSOR	
71.0.90	
71.Z °C	
17.0 Bar	
41.2 °C	
	SOR 71.2 °C 17.0 Bar 41.2 °C

Parametri di funzionamento della valvola di espansione:

- Il surriscaldamento attuale.
- L'apertura della valvola in percentuale.
- Lo stato della regolazione della valvola.

EE		SSOR 🔂
Su	perheat:	5.2 K
SF	l Set-point:	6.0 K
Ор	ening:	30! %
	Valve sta	atus:
SH Regulation		

6.8 Regolazione dei condensatori

Nelle pagine di regolazione dei condensatori sarà possibile visualizzare, per ogni condensatore, le seguenti informazioni:

La temperatura di condensazione attuale.

CONDENSER 1		
T condens.:	41.2 °C	
Regulation	43 %	

6.9 Unità ibride con circuito secondario ad acqua

Nelle unità ibride con circuito secondario ad acqua, verranno visualizzate le seguenti informazioni:

- La temperatura controllata.
- L'umidità controllata (se presente controllo umidità).
- La percentuale di apertura della valvola acqua del circuito secondario.

SOURCE 2			
Temperature:	20.4 °C		
Humidity	47 %		
r far fiar y	-11. 20		
Valve:	54⊨%		

6.10 Riscaldamento

Le pagine di stato del riscaldamento possono essere diverse a seconda del tipo di accessori presenti nell'unità.

Unità con valvola modulante ad acqua:

- La temperatura controllata.
- L'umidità controllata (se presente controllo umidità).
- La percentuale di apertura della valvola acqua del circuito di riscaldamento.

HEATIN		
Temperature:	20.4 °C	
Humidity:	47 %	
Valve:	20 %	

Unità con batteria elettrica modulante:

- La temperatura controllata.
- L'umidità controllata (se presente controllo umidità).
- La percentuale di regolazione della batteria elettrica di riscaldamento.

HEATING		Ø
Temperature:	20.4 °C	
Humidity: Heater:	47⊨% 20⊨%	

Unità con batteria elettrica a stadi:

- La temperatura controllata.
- L'umidità controllata (se presente controllo umidità).
- Il numero di stadi attivi.

HEATING		0
Temperature:	20.4 °C	
Humidity:	47 %	
Steps	1	
6.11 Umidificazione

Nelle unità con sistema di umidificazione, verranno visualizzate le seguenti informazioni:

- L'umidità controllata.
- La percentuale di funzionamento dell'umidificatore.

6.12 Dry Cooler

Nelle unità con sistema di controllo del dry cooler, verranno visualizzate le seguenti informazioni:

- La temperatura dell'acqua in ingresso all'unità.
- La percentuale di regolazione del dry cooler.

DRY COOLER			
T water M	12.9.%		
r water in	13.8 °C		
Regulation	40 %		

7 MENU PRINCIPALE

7.1 Cenni preliminari

Per accedere al MENU PRINCIPALE è sufficiente premere a lungo il tasto ENTER (\frown).

È possibile selezionare i MENU del MENU PRINCIPALE facendo scorrere il cursore con i tasti UP (\triangle) e DOWN (∇). Per accedere nel menu selezionato è sufficiente premere il tasto ENTER (\frown).

7.2 Set – Set-point

All'interno del menu SET (Set-point) è possibile modificare i set-point di regolazione della temperatura e dell'umidità. La modifica di tali parametri permetterà all'utente di selezionare le condizioni ambientali preferite.

7.3 Rete – Stato della rete locale CANBUS

All'interno del menu RETE (Stato della rete locale) è possibile visualizzare lo stato generale di tutte le unità della rete locale. L'unità dalla quale si sta accedendo sarà visualizzata da una L (Locale) mentre le altre unità saranno visualizzate dal loro indirizzo di rete (da 1 a 12).

Le unità possono assumere i seguenti stati:

- ---- : Unità non presente in rete.
- OFF: Unità spenta.
- ON: Unità accesa.
- STB: Unità in stand-by.
- ALM: Unità in allarme.
- OFL: Unità offline.

L	OCAI	L NE	TWC	RK		
	L: ON					
2	ON	7	ON	12	STB	
3	ON	8	ON	13	STB	
4	ON	9	ON	14	STB	
5	ON	10	ON	15	STB	
6	ON	11	ON	16	STB	

7.4 PAR – Parametri di regolazione

All'interno del menu PAR (Parametri) è possibile modificare, dopo aver ottenuto l'accesso tramite l'inserimento della corretta password di login, i parametri di regolazione dell'unità e i parametri di configurazione dell'unità. Il gruppo è suddiviso nelle seguenti sezioni:

- SETUP UTENTE: Modifica dei parametri di regolazione e uso dell'unità.
- SETUP COSTRUTTORE: Configurazione parametri funzionamento dell'unità.
- LINGUA: Permette la modifica della lingua del software.
- CANCELLAZIONE STORICO: Permette la cancellazione delle ore di funzionamento e dello storico allarmi.

7.5 RTC - Orologio

All'interno del menu RTC (Orologio) è possibile la modifica dell'ora e della data correnti.

7.6 ALM – Allarmi attivi

All'interno del menu **ALM (Allarmi attivi)** è possibile visualizzare gli allarmi attivi presenti sull'unità: L'accesso a questo menu equivale alla pressione prolungata del tasto **ALARM** (().

ACTIVE A				
Alarm number	: 1/2			
Motorized damper status alarm				
OK Next	OK Reset			

7.7 LOG – Storico allarmi

All'interno del menu LOG (Storico allarmi) è possibile visualizzare lo storico degli allarmi dell'unità. Gli allarmi saranno memorizzati in ordine cronologico. Nella pagina verrà visualizzata la data di intervento, l'ora di intervento e la durata dell'allarme. Per scorrere gli allarmi memorizzati è sufficiente premere il tasto ENTER ().

STORICO				
ALLARME N	°.		2	
ALLARME:	5	serra	Al. state anda me	o toriz.
08/12/2019 13:53:20 Durata:	1	h	23'	Next OK

7.8 ORE – Ore di funzionamento

All'interno del menu ORE (Ore di funzionamento) è possibile visualizzare le ore di funzionamento dei seguenti componenti dell'unità:

- Ore di funzionamento dell'unità: Indicano le ore totali di funzionamento dell'unità (Unità ON).
- Compressore 1: Indicano le ore totali di funzionamento del compressore 1.
- Compressore 2: Indicano le ore totali di funzionamento del compressore 2.
- Valvola acqua: Indicano le ore totali di funzionamento della valvola acqua refrigerata.
- Resistenze elettriche: Indicano le ore totali di funzionamento della batteria elettrica.
- Umidificatore: Indicano le ore totali di funzionamento dell'umidificatore.
- Free Cooling: Indicano le ore totali di funzionamento del sistema free cooling.
- Dry cooler: Indicano le ore totali di funzionamento del dry cooler.
- Condensatore 1: Indicano le ore totali di funzionamento del condensatore 1.
- Condensatore 2: Indicano le ore totali di funzionamento del condensatore 2.

COUNTE	rs 🗄
Unit:	4875
Compressor 1:	682
Compressor 2:	594
Water valve:	0
Heating:	307
Humidifier:	428
Free Cooling:	0
Dry Cooler:	358

7.9 INFO - Informazioni

All'interno del menu INFO (Informazioni) è possibile visualizzare il numero di serie dell'unità e la versione del software installata sull'unità.

8 USO DELL'UNITÀ

8.1 Lingua del software di regolazione

Il software di regolazione permette di configurare diverse lingue. Tramite il parametro "Lingua" (Menu Lingua) è possibile selezionare una tra le seguenti lingue:

- 1) Italiano
- 2) Inglese

8.2 Blocco tasti

Il software di regolazione permette di configurare una funzione di blocco tasti, che si attiva automaticamente se la tastiera non viene toccata per 120 s.

Tramite il parametro "Abilita Blocco Tasti" (Setup costruttore - Configurazione blocco tasti) è possibile selezionare una tra le seguenti tipologie di blocco tasti:

- 1) No: Il blocco tasti non è attivo.
- 2) Si: I tasti si bloccheranno a seguito di inattività.
- 3) Password utente: I tasti si bloccheranno a seguito di inattività e verrà richiesta la password utente per sbloccare la tastiera.

Quando i tasti sono bloccati sul display appare la relativa icona (🔒) e sarà possibile:

- Visualizzare lo stato dei componenti premendo i tasti LEFT (<a>>) e RIGHT (<a>>).
- Visualizzare gli allarmi attivi tramite la pressione prolungata del tasto ALARM (<

Quando i tasti sono bloccati NON sarà possibile:

- Accendere e spegnere l'unità tramite la tastiera.
- Accedere al menu principale.
- Cancellare gli allarmi attivi.

Per rimuovere il blocco dei tasti è sufficiente premere contemporaneamente i tasti **UP** e **DOWN** (\triangle \heartsuit) per alcuni secondi. È possibile che venga richiesta una password di sblocco, questa password è quella **UTENTE**.

8.3 Accensione dell'unità

L'unità può essere accesa e spenta premendo per alcuni secondi il pulsante **ON/OFF** (U). Lo stato dell'unità può essere visualizzato sulla pagina principale del display.

Qualora le unità siano installate in rete locale, a seconda della configurazione del parametro "**ON-OFF Dinamico**" (Setup costruttore -Configurazione rete locale), sarà possibile accendere o spegnere contemporaneamente tutte le unità presenti in una rete locale.

Quando accesa (Unità ON), l'unità potrà essere controllata tramite l'ingresso digitale di OFF da remoto e tramite il sistema di supervisione/BMS MODBUS.

8.3.1 OFF da remoto e da sistema di supervisione / BMS MODBUS

L'unità può essere spenta e accesa, una volta avviata dal terminale, tramite un ingresso digitale di OFF da remoto e tramite il sistema di supervisione/BMS MODBUS.

Per ragioni di sicurezza dell'operatore, qualora l'unità venga posta in OFF dal display, l'unità non potrà in alcun modo essere avviata tramite l'ingresso digitale di OFF da remoto e tramite il sistema di supervisione/BMS MODBUS. La priorità di accensione dell'unità è pertanto la seguente:

Α	On/Off da display
в	Off da remoto
с	Off da sistema di supervisi

one/BMS

8.3.2 RE-START automatico per mancanza alimentazione

Il software di controllo è dotato di una funzione di re-start automatico in caso di mancanza della linea di alimentazione. In caso la linea di alimentazione venisse a mancare, al suo ritorno il *c-pro 3 NODE kilo CLOSE* tornerà al funzionamento precedente al problema. Il ritorno al funzionamento precedente sarà possibile solo se, al suo riavvio, l'unità non presenta allarmi bloccanti che ne impediscano la riaccensione.

8.3.3 Allarme di mancanza alimentazione

Tramite il parametro "**Allarme mancanza alimentazione**" (Setup costruttore - Configurazione gestione Allarmi) è possibile abilitare un allarme che segnali all'utente che il *c-pro 3 NODE kilo CLOSE* ha subito un riavvio dovuto ad una mancanza di alimentazione. Tramite il parametro è possibile scegliere la tipologia di intervento dell'allarme:

1) Disabilitato: Nessun allarme viene generato in caso di riavvio per mancanza di alimentazione.

- 2) Abilitato: L'allarme verrà SEMPRE generato al successivo riavvio del *c-pro 3 NODE kilo CLOSE* di controllo.
- Unità ON: L'allarme verrà generato, al successivo riavvio del *c-pro 3 NODE kilo CLOSE* di controllo, solo se l'unità era in funzionamento (Unità ON). Se l'unità era spenta (Unità OFF), nessun allarme verrà generato.

Quando configurato, il riavvio del *c-pro 3 NODE kilo CLOSE* a causa di mancanza di tensione genererà l' "Allarme mancanza alimentazione" al fine di avvisare l'utente del problema.

8.4 Gestione delle serrande motorizzate

Il software di regolazione ha la possibilità di gestire delle serrande motorizzate, con la funzione di isolare l'unità dall'ambiente quando spenta.

All'accensione (Unità ON) il *c-pro 3 NODE kilo CLOSE* inizierà ad aprire le serrande. Quando l'ingresso digitale di stato serrande (ID2) risulterà **APERTO (Serranda aperta)** i ventilatori verranno avviati.

Tramite il parametro **"Ritardo allarme stato serrande"** (Setup costruttore - Configurazione gestione Allarmi) è possibile impostare un ritardo di intervento dell'allarme in fase di accensione, al fine di consentire al motore di aprire la serranda.

Se l'ingresso digitale di stato delle serrande risultasse CHIUSO (Serranda chiusa), al termine del periodi di apertura o durante il normale funzionamento dell'unità, verrà generato l' "Allarme stato serrande". che fermerà il funzionamento dell'unità.

8.5 Regolazione dei ventilatori di mandata

Il *c-pro 3* NODE kilo CLOSE ha la possibilità di gestire uno o più ventilatori di mandata con diverse tipologie di controllo. La tipologia di controllo è legata alle caratteristiche del ventilatore.

Tramite il parametro "Numero di ventilatori" (Setup costruttore - Configurazione ventilazione) è possibile configurare il numero di ventilatori installati nell'unità (solo quando i ventilatori sono gestiti via MODBUS).

Tramite il parametro "Tipo ventilatori" (Setup costruttore - Configurazione ventilazione) è possibile configurare il controllo dei ventilatori tra le seguenti tipologie:

1) On-off: I ventilatori verranno controllati tramite un'uscita digitale.

2) Analogici: I ventilatori verranno controllati tramite un'uscita digitale ed un'uscita analogica 0-10 V.

3) MODBUS: I ventilatori verranno controllati tramite protocollo di comunicazione MODBUS Master.

8.5.1 Regolazione dei ventilatori modulanti a velocità fissa

Tramite il parametro "**Tipo di regolazione**" (Setup costruttore - Configurazione ventilazione) è possibile configurare la regolazione dei ventilatori impostando una velocità di funzionamento fissa.

Tramite il parametro "**Velocità massima ventilatori**" (Setup costruttore - Configurazione ventilazione) è possibile configurare la velocità di funzionamento che si vuole mantenere.

A Velocità massima ventilatori (Setup costruttore-Configurazione ventilazione)

8.5.2 Regolazione dei ventilatori modulanti in proporzione alla richiesta di raffreddamento o riscaldamento

Tramite il parametro "**Tipo di regolazione**" (Setup costruttore - Configurazione ventilazione) è possibile configurare la regolazione dei ventilatori in modo da modulare la velocità in funzione della richiesta di raffreddamento o riscaldamento. E' così possibile ottenere un significativo risparmio energetico di gestione ed una riduzione del livello di rumorosità, soprattutto a carichi termici parziali.

Tramite il parametro "Velocità minima ventilatori" (Setup costruttore - Configurazione ventilazione) è possibile configurare la velocità di funzionamento minima alla quale il ventilatore potrà regolare.

Tramite il parametro "Velocità massima ventilatori" (Setup costruttore - Configurazione ventilazione) è possibile configurare la velocità di funzionamento massima alla quale il ventilatore potrà regolare.

Non è consigliabile impostare la velocità minima a un valore inferiore al 30%, poiché potrebbe impedire una corretta rilevazione della temperatura ed umidità ambiente. In caso di unità ad espansione diretta e con batterie elettriche la velocità del ventilatore verrà mantenuta alla velocità massima fino allo spegnimento del componente, al fine di evitare problemi alla regolazione.

Α	Velocità	minima	ventilatori	(Setup
	costruttore	- Configuraz	zione ventilazio	ne)
В	Velocità	massima	ventilatori	(Setup
	costruttore	- Configuraz	zione ventilazio	ne)
С	Area di mo	dulazione de	el ventilatore	
D	Richiesta d	i raffreddam	nento o riscalda	mento

8.5.3 Regolazione dei ventilatori modulanti a portata d'aria costante

Tramite il parametro "**Tipo di regolazione**" (Setup costruttore - Configurazione ventilazione) è possibile configurare la regolazione dei ventilatori in modo da modulare la velocità in funzione alla portata d'aria, al fine di mantenerla costante rispetto al parametro "**Set-point portata aria**" (Setup utente - Set-point ventilazione).

Al fine di poter calcolare la portata aria, l'unità necessita di avere un sensore di pressione installato all'interno della macchina e collegato con il boccaglio del ventilatore.

Tramite il parametro "**Pressione differenziale aria**" (Setup costruttore - Configurazione sonde) è possibile configurare la presenza del sensore di pressione differenziale aria.

La portata verrà calcolata in base alla seguente funzione matematica:

$$V = \sqrt{\Delta P} * k$$

Dove:

- V è la portata in m3/h
- ΔP è la differenza di pressione misurata
- K è il coefficiente caratteristico del ventilatore, parametro "Coefficiente portata aria" (Setup costruttore – Configurazione ventilazione)

La velocità del ventilatore verrà aumentata, o diminuita, al fine di raggiungere il valore di set-point. Una zona neutra di 100 m3/h permette di stabilizzare la velocità del ventilatore.

Tramite il parametro "Velocità minima ventilatori" (Setup costruttore - Configurazione ventilazione) è possibile configurare la velocità di funzionamento minima alla quale il ventilatore potrà regolare.

Tramite il parametro "Velocità massima ventilatori" (Setup costruttore - Configurazione ventilazione) è possibile configurare la velocità di funzionamento massima alla quale il ventilatore potrà regolare.

Questo tipo di regolazione è ottimale per garantire una portata costante anche a fronte di perdite di carico del sistema variabili (es. Filtri sporchi) che potrebbero ridurla in maniera considerevole.

8.5.4 Regolazione dei ventilatori modulanti a pressione costante

Tramite il parametro "**Tipo di regolazione**" (Setup costruttore - Configurazione ventilazione) è possibile configurare la regolazione dei ventilatori in modo da modulare la velocità in funzione alla pressione ambiente, al fine di mantenerla costante rispetto al parametro "**Set-point pressione aria**" (Setup utente - Set-point ventilazione).

Al fine di poter calcolare la pressione aria, l'unità necessita di avere un sensore di pressione installato all'interno della macchina.

Tramite il parametro "**Pressione differenziale aria**" (Setup costruttore - Configurazione sonde) è possibile configurare la presenza del sensore di pressione differenziale aria.

La velocità del ventilatore verrà aumentata, o diminuita, al fine di raggiungere il valore di set-point. Una zona neutra di 2 Pa permette di stabilizzare la velocità del ventilatore.

Tramite il parametro "Velocità minima ventilatori" (Setup costruttore - Configurazione ventilazione) è possibile configurare la velocità di funzionamento minima alla quale il ventilatore potrà regolare.

Tramite il parametro "Velocità massima ventilatori" (Setup costruttore - Configurazione ventilazione) è possibile configurare la velocità di funzionamento massima alla quale il ventilatore potrà regolare.

Questa regolazione è ottimale in caso di ambienti con distribuzione dell'aria dal pavimento rialzato, soprattutto nei seguenti casi:

- Ambienti destinati ad un'espansione futura: In questi casi il pavimento viene "aperto" durante gli step di espansione e la pressione tenderà a scendere di conseguenza. L'unità sarà quindi in grado di compensare aumentando la velocità dei ventilatori garantendo una distribuzione dell'aria ottimale.
- Ambienti soggetti a costante manutenzione: In questi casi il pavimento viene aperto durante gli interventi di manutenzione e la pressione tenderà a scendere di conseguenza. L'unità sarà quindi in grado di compensare aumentando la velocità dei ventilatori garantendo una distribuzione dell'aria ottimale.

8.5.5 Gestione della velocità di partenza

Se la regolazione dei ventilatori impostata è modulante, sarà possibile configurare un periodo di start-up. Durante tale periodo i ventilatori verranno forzati alla velocità di start-up. Trascorso questo periodo di tempo, i ventilatori inizieranno a regolare normalmente. Tramite il parametro "Velocità di start-up ventilatori" (Setup costruttore - Configurazione ventilazione) è possibile configurare la velocità di funzionamento alla quale il ventilatore verrà regolato durante il periodo di start-up.

Tramite il parametro "**Tempo di start-up ventilatori**" (Setup costruttore - Configurazione ventilazione) è possibile configurare la durata del periodo di start-up dei ventilatori.

Questa funzione è ottimale per raggiungere più velocemente la condizione di lavoro, alla partenza dell'unità senza dover attendere il periodo di modulazione necessario al raggiungimento del set-point.

8.5.6 Gestione degli allarmi dei ventilatori

Qualora i ventilatori siano gestiti tramite segnale 0-10 V o On-Off digitale, l'allarme sarà gestito tramite il relativo ingresso digitale. In caso uno o più dei ventilatori risulti in allarme, il *c-pro 3 NODE kilo CLOSE* genererà l' "Allarme generale ventilatori di mandata", che fermerà il funzionamento dell'unità.

Se i ventilatori sono gestiti tramite il collegamento MODBUS, il *c-pro 3 NODE kilo CLOSE* è in grado di rilevare le seguenti condizioni di allarme di ogni ventilatore installato nell'unità, generando l' "Allarme inverter ventilatore (1-2-3-4-5)" nel quale viene specificata la natura del problema. È possibile avere una delle seguenti cause di allarme:

- Mancanza di comunicazione: Il *c-pro 3* NODE kilo CLOSE controlla costantemente la corretta comunicazione con il modulo di controllo dei ventilatori al fine di garantire il corretto funzionamento degli stessi.
- Allarme mancanza fasi/alimentazione: L'elettronica di controllo dei ventilatori verifica costantemente la presenza di alimentazione al motore. Il controllo avviene su ogni singola fase del motore.
- Alta temperatura modulo di regolazione: L'elettronica di controllo dei ventilatori verifica costantemente la temperatura del modulo di controllo al fine di prevenire un danneggiamento dovuto a temperature troppo elevate.
- Alta temperatura motore: L'elettronica di controllo dei ventilatori verifica costantemente la temperatura del motore al fine di prevenire un danneggiamento dovuto a temperature troppo elevate.
- **Malfunzionamento modulo di regolazione**: L'elettronica di controllo dei ventilatori verifica costantemente lo stato del modulo di controllo e ne comunica l'eventuale danneggiamento.
- **Motore sovraccarico**: L'elettronica di controllo dei ventilatori verifica costantemente lo stato del motore e ne comunica l'eventuale sovraccarico.
- **Bassa alimentazione DC**: L'elettronica di controllo dei ventilatori verifica costantemente lo stato del modulo di controllo e ne comunica l'eventuale riduzione di alimentazione DC.
- **Mancanza comunicazione master-slave**: L'elettronica di controllo dei ventilatori verifica costantemente lo stato della comunicazione con i ventilatori slave e ne comunica l'eventuale mancanza di comunicazione.
- Errore sensore Hall: L'elettronica di controllo dei ventilatori verifica costantemente lo stato del sensore di Hall e ne comunica l'eventuale danneggiamento.

8.5.7 Allarme sensore di pressione differenziale aria

Se nell'unità è presente il sensore di pressione differenziale per la gestione dei ventilatori, esso sarà controllato costantemente.

In caso il sensore di pressione differenziale aria risulti rotto o sconnesso il *c-pro 3 NODE kilo CLOSE* genererà l' "Allarme sensore pressione

differenziale aria rotto".

In caso di sensore di pressione rotto o sconnesso il *c-pro 3 NODE kilo CLOSE* fermerà la regolazione di velocità all'ultimo valore con il quale si è raggiunto il set-point. Qualora il set-point non fosse mai stato raggiunto la velocità viene bloccata al 50% o alla velocità di startup, qualora impostata.

8.6 Regolazione di temperatura

8.6.1 Tipologia di controllo della temperatura

Tutte le unità sono dotate di due sonde di rilevamento delle temperature di esercizio. Una sonda è posta nella sezione di ripresa aria dall'ambiente e viene definita "Sonda di temperatura di ripresa", mentre un'altra sonda è posta nel vano di mandata aria in ambiente e viene definita "Sonda di temperatura di mandata".

Tramite il parametro "Sensore di regolazione" (Setup utente - Regolazione temperatura) è possibile configurare quale sonda sia designata al controllo di temperatura. La tipologia di controllo è normalmente legata alla tipologia di impianto che si vuole realizzare. È possibile selezionare i seguenti controlli:

- Regolazione della temperatura di ripresa: Il *c-pro 3* NODE kilo CLOSE utilizzerà il valore di temperatura di ripresa per regolare la temperatura. Questa impostazione è ottimale in ambienti dove i carichi termici sono distribuiti in maniera omogenea.
- Regolazione della temperatura di mandata: Il *c-pro 3 NODE kilo CLOSE* utilizzerà il valore di temperatura di mandata per regolare la temperatura. Questa impostazione è ottimale in ambienti dove i carichi termici non sono omogenei, e la temperatura di ripresa potrebbe risultare non corretta.

8.6.2 Impostazione dei limiti del set-point di temperatura

Qualora sia necessario limitare il campo di impostazione del set-point di regolazione della temperatura, è possibile configurare il limite minimo e massimo dello stesso:

Tramite il parametro "Limite minimo set-point temperatura" (Setup costruttore - Configurazione limiti set-point) è possibile configurare il limite minimo di impostazione del set-point di temperatura.

Tramite il parametro "Limite massimo set-point temperatura" (Setup costruttore - Configurazione limiti set-point) è possibile configurare il limite massimo di impostazione del set-point di temperatura.

Questa funzione è ottimale per evitare che vengano impostati valori di regolazione troppo alti, o bassi, che potrebbero creare problemi nell'impianto.

8.6.3 Impostazione zona neutra di regolazione della temperatura

Al fine di evitare continue pendolazioni della richiesta di raffreddamento o riscaldamento in prossimità del set-point di regolazione, è possibile configurare una zona neutra di regolazione che scosterà dal set-point il punto di inizio della regolazione. Per maggiori dettagli fare riferimento ai capitoli successivi.

Tramite il parametro "**Zona neutra temperatura**" (Setup costruttore - Configurazione zona neutra) è possibile configurare la zona neutra di regolazione della temperatura.

Questa funzione è ottimale in impianti dove i carichi termici sono molto variabili e si possono avere sovra-regolazioni in prossimità del set-point.

8.6.4 Regolazione proporzionale della temperatura

Tramite il parametro "**Tipo di regolazione**" (Setup utente - Regolazione temperatura) è possibile configurare la tipologia di regolazione "P" (Proporzionale) per la temperatura controllata.

Questo tipo di regolazione è ottimale nei casi in cui si desidera che la "forza" degli attuatori sia direttamente proporzionale alla "lontananza" della grandezza di regolazione dal valore ideale (Set-point), rispetto al valore massimo che si vuole ottenere (Banda proporzionale).

Questo tipo di regolazione tenderà sempre ad avere un **errore di regolazione a regime**, cioè uno scostamento della temperatura rispetto al valore di set-point. L'ampiezza dello scostamento varierà in funzione della correttezza del dimensionamento dell'unità rispetto al carico termico d'impianto: più l'unità è sovra-dimensionata, maggiore potrà essere lo scostamento a regime. L'uscita di comando dei componenti viene pertanto regolata secondo la seguente funzione :

$$Out_p = \frac{100}{Bp} * (In - Set)$$

Dove:

- Bp è il parametro "Banda proporzionale" (Setup utente Regolazione temperatura)
- In è il valore di temperatura controllato
- Set è il parametro "Set-point temperatura" (Menu principale - Set-point)

Nel seguente grafico viene rappresentata la regolazione proporzionale, con e senza la zona neutra:

- A Set-point temperatura (Menu principale -Setpoint)
- B Banda proporzionale (Setup utente Regolazione temperatura)
- C Regolazione raffreddamento
- D Regolazione riscaldamento
- E Zona neutra temperatura (Setup costruttore -Configurazione zona neutra)

Nel seguente grafico è rappresentata la risposta del sistema alla regolazione Proporzionale in raffreddamento. La risposta in riscaldamento sarà specularmente opposta.

- A Set-point temperatura (Menu principale -Setpoint)
- B Banda proporzionale (Setup utente Regolazione temperatura)
- C Errore di regolazione a regime

8.6.5 Regolazione proporzionale + integrale della temperatura

Tramite il parametro "Tipo di regolazione" (Setup utente - Regolazione temperatura) è possibile configurare la tipologia di regolazione "PI" (Proporzionale + Integrale) per la temperatura controllata. Questo tipo di regolazione è ottimale nei casi in cui si desidera ridurre al minimo l'Errore di regolazione a regime, aumentando pertanto la precisione della regolazione nel tempo.

La regolazione Proporzionale + Integrale aggiunge all' "Errore proporzionale" (capitolo precedente) il cosiddetto "Errore Integrale", che consente al controllore di avere memoria dei valori passati dell'"Errore proporzionale". Questa proprietà dà alla regolazione "PI" la capacità di portare il processo il più vicino possibile al punto di riferimento richiesto.

L'uscita di comando dei componenti viene pertanto regolata secondo la seguente funzione :

- Out_p è l'errore proporzionale (capitolo precedente)
- Bp è il parametro "Banda proporzionale" (Setup utente – Regolazione temperatura)
- Ti è il parametro "Tempo di integrazione" (Setup utente – Regolazione temperatura)
- In è il valore di temperatura controllato
- Set è il parametro "Set-point temperatura" (Menu principale Set-point)

A differenza della regolazione Proporzionale, la cui uscita di comando sarà a 0% al raggiungimento del Set-point, nella regolazione Proporzionale + Integrale l'uscita di comando tenderà a subire una **Sovra-regolazione** dovuta all'azione integrale. Pertanto si potranno avere valori di **Out_{pi}** maggiori di 0% anche quando il valore controllato sarà minore del Set-point. L'ampiezza della **Sovra regolazione** tenderà a diminuire nel tempo fino ad avvicinarsi allo 0%.

Nel seguente grafico è rappresentata la risposta del sistema alla regolazione Proporzionale + Integrale in raffreddamento. La risposta in riscaldamento sarà specularmente opposta.

 $Out_{pi} = Out_p + \frac{100}{Bn * Ti} \int (In - Set) dt$

Dove:

- A Set-point temperatura (Menu principale -Setpoint)
- B Banda proporzionale (Setup utente Regolazione temperatura)
- C Errore di regolazione a regime
- D Sovra-regolazione

L'ottimizzazione della regolazione può richiedere svariato tempo in quanto il sistema deve lavorare per almeno 30 minuti per garantire che il calcolo matematico venga ottimizzato. Se, al termine dei 30 minuti, il sistema risulterà ancora molto instabile, si dovranno modificare nuovamente i parametri e ricominciare i test dal principio.

Al fine di ridurre i tempi di test vi suggeriamo di inserire i seguenti valori:

- Parametro "Banda proporzionale" (Setup utente Regolazione temperatura): 10,0 °C
- Parametro "Tempo di integrazione" (Setup utente Regolazione temperatura: 180 s

8.6.6 Regolazione proporzionale + integrale + derivativa della temperatura

Tramite il parametro "Tipo di regolazione" (Setup utente - Regolazione temperatura) è possibile configurare la tipologia di regolazione "PID" (Proporzionale + Integrale + Derivativa) per la temperatura controllata.

Questo tipo di regolazione è ottimale nei casi in cui si desidera ridurre al minimo l'Errore di regolazione a regime e la Sovraregolazione, rendendo pertanto più stabile e preciso il controllo di temperatura.

La regolazione "PID" aggiunge alla regolazione Proporzionale + Integrale il cosiddetto "Errore derivativo", che consente di tenere conto della "velocità" con cui la grandezza cambia, e pertanto permette di correggere più rapidamente l'uscita di comando.

L'uscita di comando dei componenti viene pertanto regolata secondo la seguente funzione :

Dove:

- Out_p è l'errore proporzionale (capitolo precedente)
- Out_{pi} è l'errore proporzionale + Integrale (capitolo precedente)
- Bp è il parametro "Banda proporzionale" (Setup utente – Regolazione temperatura)
- Td è il parametro "Tempo di derivazione" (Setup utente Regolazione temperatura)
- In è il valore di temperatura controllato
- Set è il parametro "Set-point temperatura" (Menu principale - Set-point)

Nel seguente grafico è rappresentata la risposta del sistema alla regolazione Proporzionale + Integrale + Derivativo in raffreddamento. La risposta in riscaldamento sarà specularmente opposta.

L'ottimizzazione della regolazione può richiedere parecchio tempo in quanto il sistema deve lavorare per almeno 30 minuti per garantire che il calcolo matematico venga ottimizzato. Se, al termine dei 30 minuti, il sistema risulterà ancora molto instabile, si dovranno modificare nuovamente i parametri e ricominciare i test dal principio.

Al fine di ridurre i tempi di test vi suggeriamo di inserire i seguenti valori:

 $Out_{pid} = Out_p + Out_{pi} + \frac{100}{Bp} * Td \frac{d(In - Set)}{dt}$

- Parametro "Banda proporzionale" (Setup utente Regolazione temperatura): 40,0 °C
- Parametro "Tempo di integrazione" (Setup utente Regolazione temperatura: 60 s
- Parametro "Tempo di derivazione" (Setup utente Regolazione temperatura): 1 s

8.6.7 Allarmi di alta e bassa temperatura

Tramite i parametri "Offset allarme alta temperatura" (Setup utente - Regolazione temperatura) e "Offset allarme bassa temperatura" (Setup utente - Regolazione temperatura) è possibile configurare due soglie di allarme per la temperatura controllata.

Il superamento di tali soglie genererà l' "Allarme alta temperatura di regolazione" o l' "Allarme bassa temperatura di regolazione" al fine di avvisare l'operatore di eventuali problemi.

L'intervento degli allarmi di alta e bassa temperatura non costituisce un problema bloccante per l'unità che continuerà a funzionare regolarmente. Tramite il parametro "**Ritardo allarmi temperatura e umidità**" (Setup costruttore - Configurazione gestione Allarmi) è possibile ritardare l'intervento dell'allarme.

L'intervento degli allarmi è definito dalle seguenti formule:

$$Al_{Ht} = In > Set + Offset_{Ht}$$

$$Al_{Lt} = In < Set - Offset_{Lt}$$

Dove:

- Al_{Ht} è l'allarme di alta temperatura
- Al_{Lt} è l'allarme di bassa temperatura
- In è il valore di temperatura controllato
- Set è il parametro "Set-point temperatura" (Menu principale - Set-point)
- Offset_{Ht} è il parametro "Offset allarme alta temperatura" (Setup utente - Regolazione temperatura)
- Offset_{Lt} è il parametro "Offset allarme bassa temperatura" (Setup utente - Regolazione temperatura)

8.6.8 Gestione allarmi sonde di temperatura aria

In caso la sonda di temperatura di ripresa risulti rotta o sconnessa, il *c-pro 3 NODE kilo CLOSE* genererà l' "Allarme sonda temperatura ripresa rotta".

Allo stesso modo, in caso la sonda di temperatura di mandata risulti rotta o sconnessa, il *c-pro 3 kilo CLOSE* genererà l' "Allarme sonda temperatura mandata rotta".

Al fine di non interrompere la regolazione di temperatura, il *c-pro 3 NODE kilo CLOSE* utilizzerà il sensore funzionate come valore valido. In caso entrambe le sonde siano rotte, la regolazione di temperatura verrà fermata.

8.7 Regolazione della temperatura limite

8.7.1 Temperatura limite

Tramite il parametro "**Sensore di regolazione**" (Setup utente - Regolazione temperatura) è possibile configurare quale sonda sia designata al controllo di temperatura. Nel caso sia controllata la temperatura di ripresa, è possibile impostare dei limiti per la temperatura di mandata al fine di garantire che l'aria immessa in ambiente non sia troppo calda o troppo fredda.

8.7.2 Gestione dell'alta e bassa temperatura limite

Tramite i parametri "Limite superiore temperatura limite" (Setup utente - Regolazione temperatura limite) e "Limite inferiore temperatura limite" (Setup utente - Regolazione temperatura limite) è possibile configurare due soglie di allarme per la temperatura limite.

Il superamento di tali soglie genererà l' "Allarme alta temperatura limite" o l' "Allarme bassa temperatura limite" al fine di avvisare l'operatore di eventuali problemi.

L'intervento degli allarmi di alta e bassa temperatura limite non costituisce un problema bloccante per l'unità che continuerà a funzionare regolarmente. Tramite il parametro "**Ritardo allarmi temperatura e umidità**" (Setup costruttore – Configurazione gestione Allarmi) è possibile ritardare l'intervento dell'allarme.

L'intervento degli allarmi è definito dalle seguenti formule:

$Al_{Hlt} = In > Limit_{Hlt}$

$Al_{Llt} = In < Limit_{Llt}$

Dove:

- AI_{Ht} è l'allarme di alta temperatura limite
- Al_{Lt} è l'allarme di bassa temperatura limite
- In è il valore di temperatura limite
- Limit_{HIt} è il parametro "Limite superiore temperatura limite" (Setup utente - Regolazione temperatura limite)
- Limit_{Lit} è il parametro "Limite inferiore temperatura limite" (Setup utente - Regolazione temperatura limite)

8.8 Regolazione di umidità

8.8.1 Configurazione sonde di umidità

Le unità possono essere dotate di una sonda di umidità, configurabile tramite parametro "**Umidità**" (Setup costruttore – Configurazione sonde) che permette di visualizzare il valore del'umidità dell'aria.

8.8.2 Impostazione dei limiti del set-point di umidità

Qualora sia necessario limitare il campo di impostazione del set-point di regolazione dell' umidità, è possibile configurare il limite minimo e massimo dello stesso:

Tramite il parametro "Limite minimo set-point umidità" (Setup costruttore - Configurazione limiti set-point) è possibile configurare il limite minimo di impostazione del set-point di umidità.

Tramite il parametro "Limite massimo set-point umidità" (Setup costruttore - Configurazione limiti set-point) è possibile configurare il limite massimo di impostazione del set-point di umidità.

Questa funzione è ottimale per evitare che vengano impostati valori di regolazione troppo alti, o bassi, che potrebbero creare problemi nell'impianto.

8.8.3 Impostazione zona neutra di regolazione dell'umidità

Al fine di evitare continue pendolazioni della richiesta di deumidificazione ed umidificazione in prossimità del set-point di regolazione, è possibile configurare una zona neutra di regolazione che scosterà dal set-point il punto di inizio della regolazione. Per maggiori dettagli fare riferimento ai capitoli successivi.

Tramite il parametro "**Zona neutra umidità**" (Setup costruttore - Configurazione zona neutra) è possibile configurare la zona neutra di regolazione della umidità.

Questa funzione è ottimale in impianti dove i carichi termici sono molto variabili e si possono avere sovra-regolazioni in prossimità del set-point.

8.8.4 Regolazione proporzionale della deumidificazione

Tramite il parametro "Deumidificazione" (Setup costruttore - Configurazione regolazione umidità) è possibile abilitare il funzionamento in deumidificazione. La deumidificazione viene regolata con in sistema Proporzionale.

L'uscita di comando dei componenti viene pertanto regolata secondo la seguente funzione :

$$Out_p = \frac{100}{Bp} * (In - Set)$$

Dove:

- Bp
 il
 parametro
 "Banda
 proporzionale

 deumidificazione
 (Setup utente Regolazione umidità)
- In è il valore di umidità controllato
- Set è il parametro "Set-point umidità" (Menu principale - Set-point)

L'attivazione della deumidificazione avviene solo quando l'uscita di comando raggiungerà il parametro "Soglia intervento deumidificazione" (Setup costruttore - Configurazione regolazione umidità).

Tramite il parametro "Limite minimo deumidificazione" (Setup costruttore - Configurazione regolazione umidità) sarà possibile limitare la regolazione per evitare che la richiesta sia troppo bassa, e che pertanto non si abbia un effetto di deumidificazione sufficiente. Questo perché l'effetto di deumidificazione è possibile solo con una temperatura dell'aria molto bassa, e quindi con una richiesta di raffreddamento molto alta.

Nel seguente grafico viene rappresentata la regolazione proporzionale, con e senza la zona neutra:

- A Set-point umidità (Menu principale -Set-point)
- B Banda proporzionale (Setup utente Regolazione umidità)
- C Soglia intervento deumidificazione (Setup costruttore Configurazione regolazione umidità)
- D Limite minimo deumidificazione (Setup costruttore- Configurazione regolazione umidità)
- E Regolazione raffreddamento
- F Zona neutra umidità (Setup costruttore -Configurazione zona neutra)

8.8.5 Deumidificazione parziale

Tramite il parametro "**Deumidificazione parziale**" (Setup costruttore - Configurazione regolazione umidità) è possibile inibire l'attivazione del secondo compressore in deumidificazione.

Questa funzione è ottimale in impianti in cui il carico termico ambientale, e l'intervento dell'eventuale riscaldamento dell'unità, non è sufficiente a compensare l'attivazione di entrambi i compressori raffreddando troppo l'ambiente.

Con questa funzione attivata è possibile che il raggiungimento del set-point avvenga con tempistiche maggiori rispetto alla regolazione classica.

8.8.6 Blocco della deumidificazione

Tramite il parametro "Offset blocco deumidificazione" (Setup costruttore - Configurazione regolazione umidità) è possibile inserire un offset di temperatura che, una volta superato, interrompa la richiesta di deumidificazione per impedire un abbassamento troppo elevato della temperatura ambiente.

Questa funzione è ottimale in impianti in cui il carico termico ambientale, e l'intervento dell'eventuale riscaldamento dell'unità, non è sufficiente a compensare l'attivazione della deumidificazione raffreddando troppo l'ambiente.

Con questa funzione attivata è possibile che il raggiungimento del set-point avvenga con tempistiche maggiori rispetto alla regolazione classica.

L'intervento del blocco della deumidificazione è definito dalla seguente formula:

$$Dh_{stop} = In < Set - Offset_{dh}$$

Dove:

- In è il valore di temperatura controllato
- Set è il parametro "Set-point temperatura" (Menu principale - Set-point)
- Offset_{dh} è il parametro "Offset blocco deumidificazione"
 (Setup costruttore Setup regolazione umidità)

8.8.7 Impostazione presenza umidificazione

Tramite il parametro "Umidificatore" (Setup costruttore - Configurazione regolazione umidità) è possibile configurare la presenza di un sistema di umidificazione per la regolazione dell'umidificazione dell'ambiente.

Tramite il parametro è possibile selezionare le seguenti tipologie di regolazione dell'umidificazione:

- No Nell'unità non è presente alcun tipo di regolazione dell'umidificazione, pertanto essa sarà disabilitata.
- Sì Nell'unità, o nell'impianto, è presente un umidificatore esterno (non integrato con il controllore). L'interfacciamento all'umidificatore avverrà tramite segnale analogico 0-10 V.

8.8.8 Percentuale produzione umidificazione

Tramite il parametro "**Percentuale produzione umidificazione**" (Setup costruttore - Configurazione regolazione umidità) è possibile configurare il limite massimo dell'uscita di comando dell'umidificatore, al fine di ridurre la produzione di vapore.

Questa funzione è ottimale in impianti dove la produzione massima dell'umidificatore è troppo elevata e si possono avere problemi di sovrapproduzione di vapore ed eventuale formazione di condensa all'interno dell'unità.

8.8.9 Produzione di vapore durante le fasi di raffreddamento

Tramite il parametro "Umidificazione e freddo insieme" (Setup costruttore - Configurazione regolazione umidità) è possibile abilitare la produzione di vapore contemporaneamente al raffreddamento.

Normalmente durante le fasi di raffreddamento la produzione di vapore dovrebbe essere fermata al fine di evitare un'eventuale formazione di condensa all'interno dell'unità, dovuta alla bassa temperatura dell'aria.

Questa funzione permette, in impianti dove la produzione di vapore sia necessaria anche durante il raffreddamento (zone a clima molto freddo), di evitare problemi dovuta ad un abbassamento drastico dell'umidità ambiente.

Questa funzione è sconsigliata in unità ad espansione diretta, in quanto la temperatura dell'aria in mandata può essere molto bassa e facilitare la formazione di condensa.

8.8.10 Regolazione proporzionale dell'umidificazione

Tramite il parametro "Abilita umidificazione" (Setup utente - regolazione umidificatore) è possibile abilitare il funzionamento in umidificazione. L'umidificazione viene regolata con un sistema proporzionale.

La regolazione proporzionale dell'umidificazione offre un effetto di modulazione della quantità di vapore prodotta dal sistema di umidificazione.

Si rimanda alle caratteristiche dell'umidificatore per quanto riguarda i limiti minimo e massimo.

L'uscita di comando dei componenti viene pertanto regolata secondo la seguente funzione :

Dove:

 $Out_p = \frac{100}{Bp} * (In - Set)$

- Bp è il parametro "Banda proporzionale umidificazione" (Setup utente- Regolazione umidità)
- In è il valore di umidità controllato
- Set è il parametro "Set-point umidità"

Nel seguente grafico viene rappresentata la regolazione proporzionale, con e senza la zona neutra:

- A Set-point umidità (Menu principale -Set-point)
- B Banda proporzionale (Setup utente Regolazione umidità)
- C Regolazione umidificazione
- D Zona neutra umidità (Setup costruttore -Configurazione zona neutra)

8.8.11 Scarico manuale dell'acqua dell'umidificatore

Al fine di effettuare la manutenzione ordinaria dell'umidificatore, può rendersi necessario dover svuotare forzatamente il cilindro dall'acqua.

Tramite il parametro "Scarico manuale" (Setup utente - Regolazione umidificatore) è possibile scaricare manualmente l'acqua dal cilindro vapore al fine di rimuoverlo per manutenzione.

8.8.12 Gestione pre-lavaggio delle linee e del cilindro umidificatore

La funzione di pre-lavaggio permette di pulire le linee dell'acqua e il cilindro, soprattutto dopo aver effettuato gli allacciamenti idraulici e/o sostituito il cilindro. Durante il lavaggio, il cilindro è riempito (con contattore chiuso) e svuotato per 3 volte al fine di rimuovere eventuali impurità presenti nei tubi e nel cilindro.

Tramite il parametro "Pre-lavaggio cilindro" (Setup utente - Regolazione umidificatore) è possibile attivare la funzione di prelavaggio.

L'umidificatore tornerà automaticamente al normale funzionamento al termine della funzione di pre-lavaggio.

8.8.13 Allarmi di alta e bassa umidità

Tramite i parametri "Offset allarme alta umidità" (Setup utente - Regolazione umidità) e "Offset allarme bassa umidità" (Setup utente - Regolazione umidità) è possibile configurare due soglie di allarme per l'umidità controllata.

Il superamento di tali soglie genererà l' "Allarme alta umidità" o l' "Allarme bassa umidità" al fine di avvisare l'operatore di eventuali problemi.

L'intervento degli allarmi di alta e bassa umidità non costituisce un problema bloccante per l'unità che continuerà a funzionare regolarmente. Tramite il parametro "**Ritardo allarmi temperatura e umidità**" (Setup costruttore - Configurazione gestione Allarmi) è possibile ritardare l'intervento dell'allarme.

L'intervento degli allarmi è definito dalle seguenti formule:

$$Al_{Hh} = In > Set + Offset_{Hh}$$

$$Al_{Lh} = In < Set - Offset_{Lh}$$

Dove:

- Al_{Hh} è l'allarme di alta umidità
- Al_{Lh} è l'allarme di bassa umidità
- In è il valore di umidità
- Set è il parametro "Set-point umidità" (Menu principale
 Set-point)

- Offset_{Hh} è il parametro "Offset allarme alta umidità" (Setup utente – Regolazione umidità)
- Offset_{Lh} è il parametro "Offset allarme bassa umidità" (Setup utente – Regolazione umidità)

8.8.14 Gestione allarmi sonde di umidità aria

In caso la sonda di umidità risulti rotta o sconnessa, il c-pro 3 NODE kilo CLOSE genererà l' "Allarme sonda umidità rotta".

8.8.15 Gestione allarmi umidificatore

La rilevazione degli allarmi dell'umidificatore è gestita dalla scheda dell'umidificatore. Tramite il protocollo MODBUS master il *c-pro 3* NODE kilo CLOSE riceverà gli stati di allarme dell'umidificatore, generando l' "Allarme umidificatore interno" e fornendo la tipologia di allarme presente. Per maggiori dettagli fare riferimento al capitolo relativo alla gestione degli allarmi.

Tramite il parametro "Uscita configurabile (1-2-3-4)" (Setup costruttore - Configurazione uscite digitali) è possibile configurare una delle quatto uscite digitali al fine di fornire l' "Allarme generale umidificatore".

Entrambi gli allarmi fermano la regolazione dell'umidificatore.

8.9 Regolazione unità ad espansione diretta

8.9.1 Cenni preliminari

Tramite il parametro "**Configurazione tipo macchina**" (Setup costruttore - Configurazione tipo macchina) è possibile configurare la tipologia di regolazione della temperatura con sistema ad espansione diretta (**Espansione Diretta**).

Le unità ad espansione diretta sfruttano le proprietà del gas refrigerante al fine di raffreddare l'aria. L'organo di regolazione principale delle unità ad espansione diretta è il compressore (o compressori in caso di unità multi-circuito).

8.9.2 Gestione compressori ON-OFF

Il *c-pro 3* NODE kilo CLOSE è in grado di gestire massimo 2 compressori su 2 circuiti frigoriferi distinti. Nelle figure successive viene rappresentato il diagramma di accensione dei compressori con la regolazione Proporzionale di temperatura:

Tramite il parametro "Numero compressori" (Setup costruttore - Configurazione espansione diretta) è possibile configurare il numero di compressori presenti sull'unità.

Regolazione con 2 compressori

- A Set-point Temperatura (Menu principale -Setpoint)
- B Banda proporzionale (Setup utente Regolazione temperatura)
- C Compressore 1
- D Zona neutra temperatura (Setup costruttore -Configurazione zona neutra)
- E Compressore 2

8.9.3 Rotazione automatica dei compressori ON-OFF

Tramite il parametro "**Tipo rotazione compressori**" (Setup costruttore - Configurazione espansione diretta) è possibile configurare la tipologia di rotazione dei compressori ON-OFF.

La rotazione dei compressori non regolati permette di scegliere la logica di attivazione dei compressori al fine di bilanciare, per quanto possibile, le ore di lavoro dei compressori. È possibile scegliere tra due tipologie di rotazione:

FIFO + HS: La rotazione FIFO (First In - First Out) fa in modo che il primo compressore ad accendersi sia sempre il primo a spegnersi. Il compressore che dovrà accendersi per primo verrà definito tramite la logica HS (Hours and Start-up). La logica HS tiene conto sia delle ore di funzionamento che del numero di partenze dei compressori. Il compressore con il numero di ore di funzionamento + partenze più basso verrà avviato per primo. LIFO + HS: La rotazione LIFO (Last In - First Out) fa in modo che l'ultimo compressore ad accendersi sia sempre il primo a spegnersi. Il compressore che dovrà accendersi per primo verrà definito tramite la logica HS (Hours and Start-up). La logica HS tiene conto sia delle ore di funzionamento che del numero di partenze dei compressori. Il compressore con il numero di ore di funzionamento + partenze più basso verrà avviato per primo.

8.9.4 Gestione compressori con regolazione ad inverter

Tramite il parametro "Abilita inverter compressore" (Setup costruttore - Configurazione espansione diretta) è possibile configurare la tipologia di regolazione dei compressori ad inverter. È possibile scegliere tra le seguenti tipologie di regolazione:

1) No: Nell'unità non è presente alcun tipo di regolazione dei compressori, pertanto essa sarà disabilitata.

3) Si: Nell'unità, o nell'impianto, è presente un inverter el'interfacciamento avverrà tramite segnale analogico 0-10 V.

Il compressore ad inverter verrà sempre installato sul **Circuito 1**, pertanto in caso di regolazione con 2 compressori la rotazione verrà disabilitata. Nelle figure successive viene rappresentato il diagramma di accensione dei compressori con la regolazione Proporzionale di temperatura:

Regolazione con 2 compressori

- A Set-point Temperatura (Menu principale -Setpoint)
- B Banda proporzionale (Setup utente Regolazione temperatura)
- C Compressore 1
- D Zona neutra temperatura (Setup costruttore -Configurazione zona neutra)
- E Compressore 2

8.9.5 Regolazione del surriscaldamento con valvola di espansione elettronica (solo se presente)

L'ottimale funzionamento dei circuiti frigoriferi è principalmente legato alla regolazione del valore di Surriscaldamento del refrigerante all'uscita dell'evaporatore. Per Surriscaldamento (Superheat - SH) si intende la differenza tra la temperatura di evaporazione e la temperatura di aspirazione del compressore.

Un corretto valore di **Surriscaldamento** (**Superheat - SH**) garantisce non solo di proteggere il compressore da danneggiamenti dovuti ad improvvisi ritorni di refrigerante liquido, ma anche di garantire che il compressore operi sempre alla migliore condizione possibile, riducendo la corrente elettrica assorbita dal motore del compressore.

Al fine di ottenere una regolazione ottimale del **Surriscaldamento** (**Superheat - SH**), tutte le unità ad espansione diretta sono equipaggiate con valvole di espansione elettronica (**Electronic expansion valve EEV**), la cui precisione di posizionamento permette di garantire una modulazione costante del flusso di refrigerante immesso nella batteria evaporante.

La modulazione della valvola è gestita dal modulo di controllo EVDrive tramite un algoritmo specifico. Il valore di **Surriscaldamento** (**Superheat - SH**) viene calcolato tramite i valori trasmessi dalle sonde installate sul tratto di aspirazione del compressore. Le sonde utilizzate per il calcolo sono due:

- Sonda di pressione di aspirazione: Questa sonda rileva la pressione della batteria evaporante, attraverso la quale è possibile calcolare la temperatura di evaporazione.
- Sonda di temperatura di aspirazione: Questa sonda rileva la temperatura di aspirazione del compressore.

Il valore di **Surriscaldamento** (SH) viene confrontato con il **set-point di surriscaldamento** (6,0 K) e viene calcolata la percentuale di apertura della valvola, tramite un algoritmo PID, per mantenere il **Surriscaldamento** (SH) costante in prossimità del set-point.

Il modulo di controllo EVDrive, oltre alla regolazione del surriscaldamento, è in grado di gestire alcuni algoritmi di sicurezza necessari a proteggere il compressore. Tali algoritmi verranno spiegati nei capitoli successivi.

8.9.6 Rilevazione pressione e temperatura di condensazione

Il valore di pressione e temperatura di condensazione è indispensabile per il funzionamento del circuito frigorifero. Tramite un sensore di pressione, il microprocessore *c-pro 3 kilo CLOSE* rileva costantemente il valore di pressione di condensazione e ne calcola il valore di temperatura equivalente.

8.9.7 Gestione del de-surriscaldamento (aggiungere i parametri relativi alla funzione)

Per De-surriscaldamento (De-superheat - DSH) si intende la differenza tra la temperatura di scarico del compressore e la temperatura di condensazione del compressore.

In un'unità funzionante in modo corretto il valore di de-surriscaldamento dovrebbe essere fra 20,0 K e 30,0 K. Il *c-pro 3 NODE kilo CLOSE* controlla costantemente il valore di de-surriscaldamento e mette in atto le seguenti regolazioni:

- Nel caso il de-surriscaldamento fosse più basso di 20 K potrebbe tornare liquido al compressore. Per contrastare questo fenomeno il valore di set-point di surriscaldamento verrà alzato fino ad un massimo di 12,0 K.
- Nel caso il de-surriscaldamento fosse più alto di 30 K non c'è nessun rischio di ritorno di liquido. Pertanto, vista la condizione "favorevole" in relazione alla sicurezza del compressore, è possibile ridurre il set-point di surriscaldamento per incrementare l'efficienza del sistema (riduzione della pressione di condensazione e incremento della pressione di evaporazione) fino ad un minimo di 5,0 K.

8.9.8 Gestione apertura anticipata della valvola allo start-up del compressore

Al fine di ridurre il carico del compressore alla partenza (ΔP tra aspirazione e mandata), e di conseguenza lo spunto del motore elettrico, il driver di controllo delle valvole di espansione gestisce un algoritmo di apertura anticipata della valvola.

In caso di richiesta di partenza del compressore, la valvola di espansione si aprirà al 100% per 5 secondi al fine di bilanciare le pressioni del circuito, dopo di che il compressore verrà avviato.

8.9.9 Gestione basso surriscaldamento (LoSH)

Un valore di basso surriscaldamento (Low Superheat - LoSH) può indicare una condizione di lavoro non ottimale, che potrebbe far ritornare liquido al compressore.

Il driver di controllo delle valvole di espansione gestisce un algoritmo di verifica del basso surriscaldamento. Qualora il valore di pressione di surriscaldamento superi il valore limite di **3,0 K**, verrà visualizzato sul controllore lo stato di basso surriscaldamento.

8.9.10 Gestione alto surriscaldamento (HiSH)

Un valore di alto surriscaldamento (High Superheat - HiSH) può indicare una carica di refrigerante scarsa, che non permette una regolazione ottimale del valore di Surriscaldamento (SH).

Il driver di controllo delle valvole di espansione gestisce un algoritmo di verifica dell'alto surriscaldamento. Qualora il valore di pressione di surriscaldamento superi il valore limite di **15,0 K**, verrà visualizzato sul controllore lo stato di alto surriscaldamento.

8.9.11 Gestione alta pressione di evaporazione dei compressori (MOP)

I compressori scroll installati nelle unità presentano la necessità di lavorare a pressioni di evaporazione che non superino i valori definiti dal costruttore. Il superamento del limite costruttivo può comportare un danneggiamento meccanico del compressore.

Al fine di proteggere il compressore, il driver di controllo delle valvole di espansione gestisce un algoritmo di regolazione dell'alta pressione di evaporazione (Maximum Operating Pressure - MOP).

Qualora il valore di pressione di evaporazione superi il valore limite di **10,5 Barg (12,0 °C)**, il valore del set-point di Surriscaldamento (vedi capitoli precedenti) verrà alzato al fine di ridurre l'apertura della valvola e di conseguenza la pressione di evaporazione. Una volta ripristinato un valore accettabile di pressione di evaporazione, l'algoritmo di controllo tornerà a regolare la valvola normalmente.

8.9.12 Gestione bassa pressione di evaporazione dei compressori (LOP)

I compressori scroll installati nelle unità presentano la necessità di lavorare a pressioni di evaporazione che non superino i valori definiti dal costruttore. Il superamento del limite costruttivo può comportare un danneggiamento meccanico del compressore.

Al fine di proteggere il compressore, il driver di controllo delle valvole di espansione gestisce un algoritmo di regolazione della bassa pressione di evaporazione (Low Operating Pressure - LOP).

Qualora il valore di pressione di evaporazione scenda al di sotto del valore limite di **6,2 Barg** (-3 °C), l'apertura della valvola verrà forzata al valore attuale per evitare che la pressione continui a scendere, innescando un allarme di bassa pressione. Una volta ripristinato un valore accettabile di pressione di evaporazione, l'algoritmo di controllo tornerà a regolare la valvola normalmente.

8.9.13 Allarme bassa pressione di evaporazione

Una pressione di aspirazione al di sotto dei valori standard comporta un sovraccarico di lavoro per il compressore. Il refrigerante uscirà fortemente surriscaldato dall'evaporatore e giungerà al compressore ad una temperatura al di sopra del suo valore standard. Ciò

provoca un anomalo surriscaldamento degli avvolgimenti del motore in particolare e delle parti meccaniche del compressore in generale.

Al fine di migliorare la protezione dei compressori, il *c-pro 3 NODE kilo CLOSE* controlla costantemente il valore della pressione di evaporazione. Qualora il valore di pressione di evaporazione scenda al di sotto di **4 Barg (- 14,0 °C)**, il compressore verrà arrestato per impedirne il danneggiamento e verrà generato l' **"Allarme bassa pressione compressore (1-2)**".

Una bassa temperatura dell'aria esterna potrebbe portare ad una migrazione del refrigerante all'interno del condensatore. Questo fenomeno favorirebbe una condizione di bassa pressione durante i primi minuti di funzionamento del compressore.

Al fine di evitare falsi allarmi, in condizioni di basse temperature esterne, l' allarme bassa pressione viene ritardato alla partenza del compressore. Tramite il parametro "**Ritardo allarme bassa pressione compressori**" (Setup costruttore – Configurazione gestione Allarmi) è possibile ritardare l'intervento dell'allarme.

8.9.14 Gestione alta temperatura di scarico dei compressori

Un elevata temperatura di scarico del compressore può generare svariati problemi al compressore ed al circuito frigorifero.

Al fine di migliorare la protezione dei compressori, tutte le unità sono dotate di una sonda di temperatura di scarico del compressore installata su ogni circuito. Questa sonda ha la funzione di verificare che la temperatura di scarico non superi la soglia di danneggiamento del compressore.

La gestione della temperatura di scarico avviene tramite due differenti soglie di intervento:

- Soglia protezione temperatura di scarico (110,0 °C): Qualora la temperatura di scarico superasse tale soglia, la richiesta del compressore verrebbe ridotta al fine di mantenere la temperatura di scarico al di sotto della soglia. Nessun allarme viene generato dal controllore e l'unità continua a funzionare regolarmente. Questa opzione è valida solo per compressori controllati da inverter.
- Soglia allarme temperatura di scarico (115,0°C): Qualora la temperatura di scarico superasse tale soglia, il compressore verrebbe immediatamente fermato tramite l' "Allarme alta temperatura di scarico compressore (1-2)".

Al fine di evitare falsi allarmi in situazioni transitorie, l' allarme alta temperatura di scarico viene ritardato. Tramite il parametro "Ritardo allarme alta temperatura di scarico compressori" (Setup costruttore - Configurazione gestione Allarmi) è possibile ritardare l'intervento dell'allarme.

8.9.15 Allarme mancanza di compressione dei compressori

Un rapporto di compressione, cioè il rapporto tra le pressioni del circuito (Pressione condensazione/Pressione evaporazione), troppo piccolo è indice che il compressore non sta comprimendo il refrigerante in maniera corretta. Le possibili cause sono una rottura meccanica del compressore, il senso di rotazione del compressore errato o una condizione di lavoro errata.

Al fine di migliorare la protezione dei compressori, il *c-pro 3 NODE kilo CLOSE* controlla costantemente il valore del rapporto tra le pressioni (Pressione condensazione/Pressione evaporazione). Qualora la differenza tra le pressioni sia minore di **2,0 Barg**, il compressore verrà arrestato e verrà generato l' **"Allarme bassa compressione compressore (1-2)**".

8.9.16 Allarme alta pressione di condensazione

Una pressione di condensazione al di sopra dei valori standard comporta un sovraccarico di lavoro per il compressore. L'assorbimento dello stesso tenderà a salire, con il rischio di danneggiamento del motore. Inoltre al salire della pressione aumenta il rischio di danneggiamento dei componenti del circuito frigorifero, a causa dell'elevata pressione.

Al fine di migliorare la protezione dei compressori, il *c-pro 3* NODE kilo CLOSE controlla costantemente il valore della pressione di condensazione. Un sensore di pressione a riarmo manuale è installato sul circuito e agirà aprendo l'ingresso digitale al fine di bloccare il compressore in caso di alta pressione, generando l' **"Allarme alta pressione compressore (1-2)**".

8.9.17 Allarme protezione magnetotermica dei compressori

Tutti i compressori, essendo utenze elettriche, vengono protetti da interruttori magnetotermici al fine di preservare il motore e la linea elettrica in caso di corto circuito e sovraccarico del motore elettrico.

In caso di guasto, l'interruttore magnetotermico interromperà la linea elettrica ed aprirà l'ingresso digitale di allarme, generando l'"Allarme protezione magnetotermica compressore (1-2)".

8.9.18 Gestione degli allarmi delle valvole elettroniche (se presenti)

Il driver di regolazione delle valvole EVDrive gestisce tutti gli allarmi relativi alle valvole elettroniche generando l' "Allarme valvola espansione elettronica compressore (1-2)". Gli allarmi del driver fermano il funzionamento del circuito frigorifero. Di seguito l'elenco degli allarmi relativi alle valvole:

- Mancanza di comunicazione: l'allarme indica la mancanza di comunicazione con il regolatore c-pro 3 NODE kilo CLOSE.
- Allarme sonda pressione di evaporazione: In caso la sonda di pressione di evaporazione sia rotta o sconnessa, il driver segnalerà l'anomalia al *c-pro 3 NODE kilo CLOSE*.

- Allarme sonda pressione di condensazione: In caso la sonda di pressione di condensazione sia rotta o sconnessa, il driver segnalerà l'anomalia al *c-pro 3 NODE kilo CLOSE*.
- Allarme sonda temperatura di aspirazione: In caso la sonda di temperatura di aspirazione sia rotta o sconnessa, il driver segnalerà l'anomalia al *c-pro 3 NODE kilo CLOSE*.
- Allarme sonda temperatura di scarico: In caso la sonda di temperatura di scarico sia rotta o sconnessa, il driver segnalerà l'anomalia al *c-pro 3 NODE kilo CLOSE*.

8.10 Regolazione condensatori

8.10.1 Cenni preliminari

Tramite il parametro "Regolazione condensatori" (Setup costruttore - Configurazione regolazione condensatori) è possibile configurare la tipologia di regolazione dei condensatori delle unità ad espansione diretta. È possibile selezionare tra le seguenti tipologie di regolazione:

- 1) No: Nell'unità non è presente alcun tipo di regolazione dei condensatori, pertanto essa sarà disabilitata.
- 2) Proporzionale: I condensatori verranno regolati con un sistema proporzionale attraverso un segnale 0-10 V.
- 3) AutoSet-point: I condensatori verranno regolati con un sistema proporzionale attraverso un segnale 0-10 V. Il set-point di regolazione verrà calcolato automaticamente in base alle condizioni di lavoro (vedi capitoli successivi).

8.10.2 Regolazione proporzionale dei condensatori

Per evitare problematiche di sovra-regolazione della temperatura di condensazione, il condensatore viene regolato solo a compressore acceso.

L'uscita di comando dei condensatori viene regolata secondo la seguente funzione :

Dove:

Bp

è il

$$Out_p = \frac{100}{Bp} * (In - Set)$$

$$Condensatione'' condensatori) \\
Condensatori) \\
Condensatori \\
Condensatori$$

In è il valore di temperatura di condensazione
Set è il parametro "Set-point condensazione" (Setup utente – Regolazione condensatori)

"Banda

utente

proporzionale

Regolazione

parametro

(Setup

Tramite il parametro "**Richiesta minima condensazione**" (Setup costruttore - Configurazione regolazione condensazione) è possibile configurare la richiesta di funzionamento minima alla quale si potrà regolare il condensatore.

Tramite il parametro "**Richiesta massima condensazione**" (Setup costruttore - Configurazione regolazione condensazione) è possibile configurare la richiesta di funzionamento massima alla quale si potrà regolare il condensatore.

Nel seguente grafico viene rappresentata la regolazione proporzionale:

Dove:

- A Set-point condensazione (Setup utente Regolazione condensatori)
- B Banda proporzionale condensazione (Setup utente Regolazione condensatori)
- C Regolazione condensatori

8.10.3 Regolazione dei condensatori con AUTOSET-POINT

Una temperatura di condensazione bassa permette di ottenere un risparmio energetico del compressore. Se la regolazione della temperatura di condensazione è legata alla temperatura esterna (es. Condensatori ad aria o ad acqua con dry cooler), durante i periodi freddi è possibile ridurre il set-point di regolazione al fine di incrementare il risparmio energetico.

Attraverso la regolazione dei condensatori con AutoSet-point è possibile, tramite un apposito algoritmo, ottenere il miglior set-point di regolazione possibile per le condizioni di lavoro dei condensatori.

Per una regolazione ottimale del sistema di AutoSet-point è suggerito impostare il parametro "Set-point condensazione" (Setup utente -Regolazione condensatori) al valore minimo al quale si vuole che lavorino i condensatori (es. 35°C).

La regolazione del set-point avverrà nel seguente modo:

 CONDIZIONI DI BASSA TEMPERATURA ESTERNA: Fintanto che la temperatura dell'aria esterna (o dell'acqua) è tale per cui la temperatura di condensazione resterà all'interno della zona definita dal parametro "Set-point condensazione" (Setup utente - Regolazione condensatori) + parametro "Banda proporzionale condensazione" (Setup utente -Regolazione condensatori), la regolazione sarà di tipo proporzionale (vedi capitolo precedente). INNALZAMENTO DELLA TEMPERATURA ESTERNA: All'aumentare della temperatura dell'aria esterna (o dell'acqua), anche la temperatura di condensazione inizierà a salire. Al raggiungimento del 100% della richiesta, verrà avviato un timer. Non appena il timer supera il valore del parametro "Tempo AutoSet-point" (Setup costruttore – configurazione regolazione condensatori), al parametro "Set-point condensazione" (Setup utente - Regolazione condensatori) verrà sommato il parametro "Aumento Set-point condensazione" (Setup utente - Regolazione condensatori). Il set-point verrà innalzato fintanto che la temperatura non rientri nella nuova zona di regolazione, fino ad un massimo pari al parametro "Massimo Set-point condensazione" (Setup utente - Regolazione, fino ad un massimo pari al parametro "Massimo Set-point condensazione" (Setup utente - Regolazione, fino ad un massimo pari al parametro "Massimo Set-point condensazione" (Setup utente - Regolazione, fino ad un massimo pari al parametro "Massimo Set-point condensazione" (Setup utente - Regolazione, fino ad un massimo pari al parametro "Massimo Set-point condensazione" (Setup utente - Regolazione, fino ad un massimo pari al parametro "Massimo Set-point condensazione" (Setup utente - Regolazione condensatori).

- **REGOLAZIONE CON SET-POINT INNALZATO:** Fintanto che il set-point sarà incrementato, la richiesta di condensazione verrà forzata ad un valore minimo pari al parametro "**Richiesta minima AutoSet-point**" (Setup costruttore Configurazione regolazione condensatori). Questo per evitare che il valore della temperatura di condensazione venga sfalsato in caso di raggiungimento del set-point.
 - DIMINUZIONE DELLA TEMPERATURA ESTERNA: Al diminuire della temperatura dell'aria esterna, la temperatura di condensazione tenderà a scendere al di sotto del set-point modificato. In questo caso, non appena la temperatura di condensazione sarà al di fuori della zona di regolazione, verrà avviato un timer. Non appena superato parametro "Tempo AutoSet-point" (Setup costruttore configurazione regolazione condensatori), al set-point modificato verrà sottratto il parametro "Aumento Set-point condensazione" (Setup utente Regolazione condensatori). Il set-point verrà ridotto fintanto che la temperatura non rientri nella zona di regolazione, o fino al raggiungimento del parametro "Set-point condensazione" (Setup utente Regolazione" (Setup utente Regolazione).

8.10.4 Gestione della richiesta di partenza

Al fine di migliorare la regolazione dei condensatori è possibile configurare un periodo di start-up. Durante il periodo di start-up impostato la regolazione verrà forzata alla richiesta di start-up. Al termine del tempo di start-up la regolazione tornerà al normale funzionamento proporzionale.

Tramite il parametro "**Richiesta di start-up condensazione**" (Setup costruttore - Configurazione regolazione condensazione) è possibile configurare la richiesta a cui verrà regolato il condensatore durante il periodo di start-up.

Tramite il parametro "Tempo di start-up condensazione" (Setup costruttore - Configurazione regolazione condensazione) è possibile configurare la durata del periodo di start-up della regolazione di condensazione.

Questa funzione è ottimale per raggiungere più velocemente la condizione di lavoro, alla partenza dell'unità senza dover attendere il periodo di modulazione necessario al raggiungimento del set-point.

8.10.5 Gestione regolazione condensatori con sonda rotta

Al fine di non interrompere la regolazione dei condensatori, in caso di rottura della sensore di pressione di condensazione è possibile forzare la richiesta ad un valore predefinito.

Tramite il parametro "Forzatura con errore sonda" (Setup costruttore - Configurazione regolazione condensazione) è possibile configurare la percentuale alla quale sarà forzata la richiesta in presenza dell' "Allarme sensore di pressione di condensazione".

8.10.6 Gestione allarmi condensatori

Al fine di rilevare eventuali problematiche legate ai condensatori, è possibile configurare un ingresso digitale come allarme condensatore.

Tramite il parametro "Ingresso configurabile (1-2-3-4)" (Setup costruttore - Configurazione ingressi digitali) è possibile configurare uno dei quatto ingressi digitali al fine di rilevare l'allarme condensatore 1 o 2.

Quando configurato, l'apertura dell'ingresso digitale genererà l' "Allarme generale condensatore (1-2)" che fermerà la regolazione dei condensatori e dei compressori ad essi legati.

A seconda dell'impostazione del parametro "Gravità allarmi compressori" (Setup costruttore - Configurazione gestione Allarmi), l'intervento potrà fermare anche l'unità.

8.11 Regolazione unità evaporanti per collegamento a moto-condensante remota

8.11.1 Cenni preliminari

Tramite il parametro "Configurazione tipo macchina" (Setup costruttore - Configurazione tipo macchina) è possibile configurare la tipologia di regolazione della temperatura con sistema ad espansione diretta per collegamento a moto-condensante remota (Evaporatore)

Le unità per collegamento a moto-condensanti remote sono fornite senza compressori e senza valvola di espansione, in quanto questi componenti sono installati nella moto-condensante.

8.11.2 Configurazione per il funzionamento con moto-condensante remota

Al fine di garantire il funzionamento del sistema con moto-condensate remota è necessario configurare le uscite di comando dell'unità. Tramite il parametro "**Uscita configurabile (1-2-3-4)**" (Setup costruttore - Configurazione uscite digitali) è possibile configurare una delle quatto uscite digitali al fine di fornire il contatto di accensione della moto-condensante.

L'uscita modulante 0-10 V di regolazione della richiesta di raffreddamento (AO 2 - Inverter esterno) permetterà di pilotare una motocondensante con compressore ad inverter.

La richiesta di raffreddamento avverrà con le modalità riportate nei capitoli precedenti (Espansione diretta).

8.11.3 Gestione allarme moto-condensante

Al fine di fornire all'unità l'informazione sullo stato della moto-condensante, è possibile configurare un ingresso digitale come allarme generale moto-condensante.

Tramite il parametro "Ingresso configurabile (1-2-3-4)" (Setup costruttore - Configurazione ingressi digitali) è possibile configurare uno dei quatto ingressi digitali al fine di rilevare l'allarme della moto-condensante.

Quando configurato, l'apertura dell'ingresso digitale genererà l' "Allarme generale moto-condensante" che fermerà la regolazione della moto-condensante.

A seconda dell'impostazione del parametro "Gravità allarmi compressori" (Setup costruttore - Configurazione gestione Allarmi), l'intervento dell'allarme potrà fermare anche l'unità.

8.12 Regolazione unità ad acqua refrigerata

8.12.1 Cenni preliminari

Tramite il parametro "**Configurazione tipo macchina**" (Setup costruttore - Configurazione tipo macchina) è possibile configurare la tipologia di regolazione della temperatura con sistema ad acqua refrigerata (**Acqua refrigerata**)

Le unità ad acqua refrigerata utilizzano acqua fredda, generata da unità frigorifera esterna, per la regolazione di temperatura. La modulazione della potenza frigorifera dell'unità avverrà tramite la regolazione di una valvola con segnale di comando 0-10 V.

8.12.2 Gestione del circuito idrico ad acqua refrigerata

Il *c-pro 3* NODE kilo CLOSE è in grado di gestire massimo un circuito idrico con regolazione tramite segnale di comando 0-10 V. Nelle figure

successive viene rappresentato il diagramma di comando della valvola con la regolazione Proporzionale di temperatura:

Dove:

- A Set-point temperatura (Menu principale Setpoint)
- B Banda proporzionale (Setup utente Regolazione temperatura)
- C Regolazione valvola
- D Zona neutra temperatura (Setup costruttore -Configurazione zona neutra)

8.12.3 Rilevazione della temperatura del circuito idrico

Attraverso l'installazione di due sonde di temperatura, il *c-pro 3* NODE kilo CLOSE è in grado di rilevare le temperature dell'acqua in ingresso ed in uscita dal circuito idrico.

Tramite il parametro "**Temperatura acqua IN / Free cooling**" (Setup costruttore - Configurazione sonde) è possibile configurare la sonda di rilevazione acqua in ingresso al circuito idrico.

Tramite il parametro "Temperatura acqua OUT" (Setup costruttore - Configurazione sonde) è possibile configurare la sonda di rilevazione acqua in uscita dal circuito idrico.

8.12.4 Gestione allarmi sonde di temperatura

In caso la sonda di temperatura dell'acqua in ingresso risulti rotta o sconnessa, il *c-pro 3 NODE kilo CLOSE* genererà l' "Allarme sonda temperatura acqua IN / Free cooling rotta".

In caso la sonda di temperatura dell'acqua in uscita risulti rotta o sconnessa, il *c-pro 3 NODE kilo CLOSE* genererà l' "Allarme sonda temperatura acqua OUT rotta".

8.13 Regolazione unità free cooling

8.13.1 Cenni preliminari

Tramite il parametro "**Configurazione tipo macchina**" (Setup costruttore - Configurazione tipo macchina) è possibile configurare la tipologia di regolazione della temperatura con sistema di free cooling ad acqua o ad aria (**Free Cooling**).

Le unità con sistema di free cooling utilizzano l'aria esterna per raffreddare gratuitamente l'ambiente, quando possibile. Il Free cooling può essere diretto (Immissione aria esterna) o indiretto (tramite circuito idrico), in entrambi i casi il circuito secondario è sempre ad espansione diretta con condensatore ad aria o ad acqua integrato.

8.13.2 Regolazione sistema free cooling

Il sistema di free cooling viene gestito tramite la rilevazione della temperatura dell'aria esterna o dell'acqua in ingesso all'unità. Tramite il parametro "Temperatura acqua IN / Free cooling" (Setup costruttore - Configurazione sonde) è possibile configurare la sonda di rilevazione della temperatura di free cooling.

La regolazione attiverà il funzionamento in free cooling quando la seguente funzione risulterà valida:

$$T_{Reg} - T_{Fc} \geq \Delta_{Fc}$$

Dove:

- T_{Reg} è la temperatura regolata
- T_{Fc} è la temperatura di free cooling
- Δ_{Fc} è il parametro "Delta free cooling" (Setup utente -Regolazione free cooling & unità ibride)

Quando il sistema di free cooling è attivo la regolazione di temperatura verrà effettuata regolando, tramite segnale di comando 0-10 V, la serranda o la valvola di free cooling. Nelle figure successive viene rappresentato il diagramma di comando del componente di free cooling con la regolazione Proporzionale di temperatura:

Dove:

- A Set-point temperatura (Menu principale Setpoint)
- B Banda proporzionale (Setup utente Regolazione temperatura)
- C Regolazione free cooling
- D Zona neutra temperatura (Setup costruttore -Configurazione zona neutra

Qualora il sistema free cooling non fosse sufficiente alla regolazione di temperatura, e la richiesta di raffreddamento raggiungesse la "Soglia max FC reg. mandata", il c-pro 3 NODE kilo CLOSE provvederà all'attivazione dei compressori del circuito secondario.

Una volta attivati i compressori regoleranno la temperatura come riportato nei capitoli precedenti (espansione diretta) per soddisfare la rimanente parte della richiesta freddo.

Quando la temperatura aria esterna non sarà più in grado di provvedere al funzionamento di free cooling, e quindi la funzione non sarà più valida, l'unità funzionerà solamente ad espansione diretta. Per maggiori dettagli fare riferimento ai capitoli precedenti.

8.13.3 Forzatura sistema free cooling

Al fine di avere sempre il sistema di free cooling attivo, è possibile impostare un ingresso digitale come input di forzatura del sistema free cooling.

Tramite il parametro "**Ingresso configurabile (1-2-3-4)**" (Setup costruttore - Configurazione ingressi digitali) è possibile configurare uno dei quatto ingressi digitali al fine forzare il funzionamento di free cooling, sia sempre acceso che sempre spento.

8.13.4 Gestione allrmi sonda di temperatura free cooling

In caso la sonda di temperatura free cooling risulti rotta o sconnessa, il *c-pro 3 NODE kilo CLOSE* genererà l' "Allarme sonda temperatura acqua IN / Free cooling rotta".

Questo allarme ferma il funzionamento del free cooling ed attiva i componenti del circuito frigorifero.

8.14 Regolazione dry cooler

8.14.1 Cenni preliminari

Nelle unità con circuito idrico, e soprattutto nelle unità con sistema di free cooling, è possibile avere una regolazione di velocità per i ventilatori di un dry cooler (raffreddatore di liquido) che fornirà l'acqua all'unità.

Tramite il parametro "**Temperatura acqua IN / Free cooling**" (Setup costruttore - Configurazione sonde) è possibile configurare la sonda di rilevazione acqua in ingresso al circuito idrico.

Tramite il parametro "**Regolazione dry cooler**" (Setup costruttore - Configurazione regolazione dry cooler) è possibile configurare la tipologia di regolazione dei dry cooler collegati all'unità. È possibile selezionare tra le seguenti tipologie di regolazione:

1) No: Nell'unità non è presente alcun tipo di regolazione dei dry cooler, pertanto essa sarà disabilitata.

- 2) Proporzionale: I dry cooler verranno regolati con un sistema proporzionale attraverso un segnale 0-10 V.
- 3) Auto Set-point: I dry cooler verranno regolati con un sistema proporzionale attraverso un segnale 0-10 V. Il set-point di regolazione verrà calcolato automaticamente in base alle condizioni di lavoro (vedi capitoli successivi).

8.14.2 Regolazione proporzionale dei dry cooler

L'uscita di comando dei dry cooler viene regolata secondo la seguente funzione :

$$Out_p = \frac{100}{Bp} * (In - Set)$$

Dove:

- Bp è il parametro "Banda proporzionale dry cooler" (Setup utente - Regolazione dry cooler)
- In è il valore di temperatura di condensazione
- Set è il parametro "Set-point dry cooler" (Setup utente – Regolazione dry cooler)

Tramite il parametro "Velocità minima ventilatori" (Setup costruttore - Configurazione regolazione dry cooler) è possibile configurare la velocità di funzionamento minima dei ventilatori del dry cooler.

Tramite il parametro "Velocità massima ventilatori" (Setup costruttore - Configurazione regolazione dry cooler) è possibile configurare la velocità di funzionamento massima dei ventilatori del dry cooler.

Nel seguente grafico viene rappresentata la regolazione proporzionale:

Dove:

- A Set-point dry cooler (Setup utente Regolazione dry cooler)
- B Banda proporzionale dry cooler (Setup utente Regolazione dry cooler)
- C Regolazione dry cooler

8.14.3 Regolazione dei dry cooler con AutoSet-point

Attraverso la regolazione dei dry cooler con **AutoSet-point** è possibile, tramite un apposito algoritmo, ottenere il miglior set-point di regolazione possibile per la temperatura dell'acqua.

Per una regolazione ottimale del sistema di AutoSet-point è suggerito impostare il parametro "Set-point dry cooler" (Setup utente -Regolazione dry cooler) al valore minimo al quale si vuole che lavorino i dry cooler (es. 7 °C).

La regolazione del set-point avverrà nel seguente modo:

- CONDIZIONI DI BASSA TEMPERATURA ESTERNA: Fintanto che la temperatura dell'aria esterna è tale per cui la temperatura dell'acqua resterà all'interno della zona definita dal parametro "Set-point dry cooler" (Setup utente Regolazione dry cooler) + parametro "Banda proporzionale dry cooler" (Setup utente Regolazione dry cooler), la regolazione sarà di tipo proporzionale (vedi capitolo precedente).
- INNALZAMENTO DELLA TEMPERATURA ESTERNA: All'aumentare della temperatura dell'aria esterna, anche la temperatura dell'acqua inizierà a salire. Al raggiungimento del 100% della richiesta, verrà avviato un timer. Non appena il timer supera il valore del parametro "Tempo AutoSet-point" (Setup costruttore configurazione regolazione dry cooler), al parametro "Set-point dry cooler" (Setup utente Regolazione dry cooler) verrà sommato il parametro "Aumento Set-point dry cooler" (Setup utente Regolazione dry cooler). Il set-point verrà innalzato fintanto che la temperatura non rientri nella nuova zona di regolazione, fino ad un massimo pari al parametro "Massimo Set-point dry cooler" (Setup utente Regolazione dry cooler).
- REGOLAZIONE CON SET-POINT INNALZATO: Fintanto che il set-point sarà incrementato, la velocità dei ventilatori verrà forzata ad un valore minimo pari al parametro "Velocità minima AutoSet-point" (Setup costruttore – Configurazione regolazione dry cooler). Questo per evitare che il valore della temperatura dell'acqua venga sfalsato in caso di raggiungimento del set-point.
- DIMINUZIONE DELLA TEMPERATURA ESTERNA: Al diminuire della temperatura dell'aria esterna, la temperatura dell'acqua tenderà a scendere al di sotto del set-point modificato. In questo caso, non appena la temperatura dell'acqua sarà al di fuori della zona di regolazione, verrà avviato un timer. Non appena superato parametro "Tempo AutoSetpoint" (Setup costruttore configurazione regolazione dry cooler), al set-point modificato verrà sottratto il parametro "Aumento"

Set-point dry cooler" (Setup utente - Regolazione dry cooler). Il set-point verrà ridotto fintanto che la temperatura dell'acqua non rientri nella zona di regolazione, o fino al raggiungimento del parametro "Set-point dry cooler" (Setup utente - Regolazione dry cooler).

8.14.4 Gestione della richiesta di partenza

Al fine di migliorare la regolazione dei dry cooler è possibile configurare un periodo di start-up. Durante il periodo di startup impostato la regolazione verrà forzata alla velocità di start-up. Al termine del tempo di start-up la regolazione tornerà al normale funzionamento proporzionale.

Tramite il parametro "Velocità start-up ventilatori" (Setup costruttore - Configurazione regolazione dry cooler) è possibile configurare la velocità a cui verranno regolati i ventilatori del dry cooler durante il periodo di start-up.

Tramite il parametro "**Tempo di start-up ventilatori**" (Setup costruttore - Configurazione regolazione dry cooler) è possibile configurare la durata del periodo di start-up della regolazione dei ventilatori del dry cooler.

Questa funzione è ottimale per raggiungere più velocemente la condizione di lavoro, alla partenza dell'unità senza dover attendere il periodo di modulazione necessario al raggiungimento del set-point.

8.14.5 Regolazione cut-off ventilatori dry cooler

Per evitare problematiche di sovra-regolazione della temperatura dell'acqua, è possibile impostare un valore di cut off per la regolazione dei ventilatori del dry cooler.

Tramite il parametro "**Cut-off ventilatori**" (Setup costruttore - Configurazione regolazione dry cooler) è possibile configurare una temperatura di cut-off dei ventilatori di condensazione. Quando la temperatura dell'acqua arriverà al valore di set-point - cutoff, la regolazione dei ventilatori verrà fermata.

8.14.6 Gestione regolazione dry cooler con sonda di temperatura acqua rotta

Al fine di non interrompere la regolazione dei dry cooler, in caso di rottura della sonda di temperatura acqua IN è possibile forzare la velocità dei ventilatori ad un valore predefinito.

Tramite il parametro "Forzatura con errore sonda" (Setup costruttore - Configurazione regolazione dry cooler) è possibile configurare la percentuale alla quale sarà forzata la velocità dei ventilatori in presenza dell' "Allarme sonda di temperatura acqua IN /Free cooling rotta".

8.14.7 Gestione allarmi dry cooler

Al fine di rilevare eventuali problematiche legate ai dry cooler, è possibile configurare un ingresso digitale come allarme generale dry cooler.

Tramite il parametro "Ingresso configurabile (1-2-3-4)" (Setup costruttore - Configurazione ingressi digitali) è possibile configurare uno dei quatto ingressi digitali al fine di rilevare l'allarme generale del dry cooler.

Quando configurato, l'apertura dell'ingresso digitale genererà l' "Allarme generale dry cooler" che fermerà la regolazione dei dry cooler.

8.15 Gestione pompa acqua

8.15.1 Cenni preliminari

Il *c-pro 3* NODE kilo CLOSE è in grado di gestire l'attivazione di una pompa per la circolazione dell'acqua a servizio dei circuiti dell'unità.

8.15.2 Configurazione gestione pompa acqua

Tramite il parametro "**Tipo di regolazione pompa**" (Setup costruttore - Configurazione Pompa acqua) è possibile configurare la tipologia di attivazione della pompa. È possibile selezionare tra le seguenti tipologie di regolazione:

1) No: Nell'unità non è presente alcuna regolazione della pompa acqua, pertanto essa sarà disabilitata.

2) Unità ON: La pompa verrà attivata contemporaneamente all' ON dell'unità.

3) Richiesta freddo: La pompa verrà attivata solo in caso di richiesta di raffreddamento.

Tramite il parametro "Uscita configurabile (1-2-3-4)" (Setup costruttore - Configurazione uscite digitali) è possibile configurare uno delle quattro uscite digitali al fine di comandare la pompa acqua.

8.15.3 Gestione ritardo spegnimento pompa acqua

In alcuni casi la pompa acqua potrebbe avere la necessità di funzionare per alcuni secondi dopo la richiesta di spegnimento. Tramite il parametro "**Ritardo spegnimento pompa**" (Setup costruttore - Configurazione Pompa acqua) è possibile configurare un ritardo allo spegnimento della pompa.

8.15.4 Gestione allarme pompa acqua

Al fine di fornire all'unità l'informazione sullo stato della pompa acqua, è possibile configurare un ingresso digitale come allarme generale pompa acqua.

Tramite il parametro "Ingresso configurabile (1-2-3-4)" (Setup costruttore - Configurazione ingressi digitali) è possibile configurare uno dei quatto ingressi digitali al fine di rilevare l'allarme della pompa acqua.

Quando configurato, l'apertura dell'ingresso digitale genererà l' "Allarme generale pompa acqua" che fermerà la regolazione della pompa acqua.

A seconda dell'impostazione del parametro "Gravità allarme pompa acqua" (Setup costruttore - Configurazione gestione Allarmi), l'intervento dell'allarme potrà fermare anche l'unità.

8.16 Regolazione unità ibride

8.16.1 Cenni preliminari

Tramite il parametro "**Configurazione tipo macchina**" (Setup costruttore - Configurazione tipo macchina) è possibile configurare la tipologia di regolazione della temperatura con sistema ibrido ad acqua o ad espansione diretta.

Le unità con sistema di ibrido hanno al loro interno due distinte fonti di raffreddamento, una primaria per la normale regolazione, ed una secondaria per emergenza in caso di problemi alla fonte primaria.

Tramite il parametro "**Selezione fonte primaria**" (Setup costruttore - Configurazione tipo macchina) è possibile configurare la tipologia di raffreddamento primario tra Acqua refrigerata ed Espansione diretta.

Tramite il parametro "Selezione fonte secondaria" (Setup costruttore - Configurazione tipo macchina) è possibile configurare la tipologia di raffreddamento secondario tra Acqua refrigerata ed Espansione diretta.

8.16.2 Regolazione sistema ibrido ad acqua

Il sistema ibrido con fonte di raffreddamento primaria ad acqua refrigerata viene gestito tramite la rilevazione della temperatura dell'acqua in ingesso al circuito primario.

Tramite il parametro "**Temperatura acqua IN / Free cooling**" (Setup costruttore - Configurazione sonde) è possibile configurare la sonda di rilevazione della temperatura dell'acqua in ingresso al circuito primario.

Il *c-pro 3* NODE kilo CLOSE utilizzerà la fonte primaria, per la regolazione di temperatura, fintanto che la temperatura dell'acqua in ingresso resti al di sotto del parametro "**Set-point acqua unità ibride**" (Setup utente - Regolazione free cooling & unità ibride) + parametro "**Banda acqua unità ibride**" (Setup utente - Regolazione free cooling & unità ibride).

Qualora la temperatura dell'acqua in ingresso fosse più alta del parametro "**Set-point acqua unità ibride**" (Setup utente -Regolazione free cooling & unità ibride) + parametro "Banda acqua unità ibride" (Setup utente - Regolazione free cooling & unità ibride), il *c-pro 3* NODE kilo CLOSE fermerà la fonte primaria per passare alla fonte secondaria.

Il ritorno alla fonte primaria avverrà quando la temperatura dell'acqua ritornerà ad essere uguale al parametro "Set-**point acqua unità ibride**" (Setup utente - Regolazione free cooling & unità ibride).

8.16.3 Regolazione sistema ibrido ad espansione diretta

Il sistema ibrido fonte di raffreddamento primaria ad espansione diretta viene gestito tramite la rilevazione degli allarmi del circuito ad espansione diretta primario.

Il *c-pro 3* NODE kilo CLOSE utilizzerà la fonte primaria, per la regolazione di temperatura, fintanto che non siano presenti allarmi che compromettano il funzionamento del circuito frigorifero.

Qualora il circuito frigorifero non fosse più operativo, il *c-pro 3 NODE kilo CLOSE* fermerà la fonte primaria per passare alla fonte secondaria. La fonte secondaria rimarrà attiva fintanto che le condizioni del circuito frigorifero non siano ristabilite.

8.16.4 Forzatura fonte di raffreddamento secondaria

Tramite il parametro "Scambio sorgente unità ibride" (Setup utente - Regolazione free cooling & unità ibride) è possibile forzare il funzionamento della fonte secondaria.

Al fine di velocizzare il passaggio alla fonte di raffreddamento secondaria, o in caso di manutenzione, è possibile anche impostare un ingresso digitale come input di scambio forzato tra le fonti.

Tramite il parametro "Ingresso configurabile (1-2-3-4)" (Setup costruttore - Configurazione ingressi digitali) è possibile configurare uno dei quatto ingressi digitali al fine forzare il funzionamento con la fonte secondaria.

8.17 Regolazione componenti riscaldanti

8.17.1 Cenni preliminari

Tramite il parametro "**Riscaldamento**" (Setup costruttore - Configurazione riscaldamento) è possibile configurare la tipologia di regolazione della temperatura in fase di riscaldamento invernale e post-riscaldamento estivo (deumidificazione). È possibile selezionare tra le seguenti tipologie di regolazione:

- 1) No: Nell'unità non è presente alcun tipo di regolazione del riscaldamento, pertanto essa sarà disabilitata.
- 2) Resistenze a stadi: Nell'unità è presente una batteria elettrica di riscaldamento a stadi, che verrà gestita dalle relative uscite digitali.
- 3) Batteria modulante: Nell'unità è presente una batteria elettrica di riscaldamento modulante, che verrà gestita attraverso un segnale 0-10 V.
- Valvola ad acqua: Nell'unità è presente una batteria di riscaldamento ad acqua, che verrà gestita attraverso un segnale 0-10 V.

8.17.2 Riscaldamento con batterie elettriche a stadi

Il *c-pro 3* NODE kilo CLOSE è in grado di gestire batterie elettriche con massimo 2 stadi. Nelle figure successive viene rappresentato il diagramma di accensione degli stadi con la regolazione Proporzionale di temperatura:

Tramite il parametro "**Numero stadi batteria elettrica**" (Setup costruttore - Configurazione riscaldamento) è possibile configurare il numero di stadi di cui è composta la batteria elettrica presente nell'unità (Massimo 2).

Tramite il parametro "Tipo inserimento stadi" (Setup costruttore - Configurazione riscaldamento) è possibile configurare la tipologia di accensione degli stadi tra 2 e 3 Gradini. Per maggiori informazioni fare riferimento ai seguenti grafici.

Tramite il parametro "**Potenza batteria elettrica**" (Setup costruttore - Configurazione riscaldamento) è possibile configurare la potenza elettrica della batteria installata.

Regolazione con 1 stadio

Regolazione con 2 stadi (a 2 gradini)

Regolazione con 2 stadi (a 3 gradini)

- A Set-point Temperatura (Menu principale -Setpoint)
- B Banda proporzionale (Setup utente Regolazione temperatura)
- C Stadio 1
- D Zona neutra temperatura (Setup costruttore -Configurazione zona neutra)
- E Stadio 2

8.17.3 Riscaldamento con batterie elettriche o ad acqua modulanti

Il *c-pro 3* NODE kilo CLOSE è in grado di gestire batterie elettriche o ad acqua modulanti tramite un segnale 0-10 V. Nelle figure successive viene rappresentato il diagramma di modulazione con la regolazione Proporzionale di temperatura:

Tramite il parametro "**Potenza batteria elettrica**" (Setup costruttore - Configurazione riscaldamento) è possibile configurare la potenza elettrica della batteria installata.

- A Set-point temperatura (Menu principale -Setpoint)
- B Banda proporzionale (Setup utente Regolazione temperatura)
- C Riscaldamento
- D Zona neutra temperatura (Setup costruttore -Configurazione zona neutra)

8.17.4 Gestione allarmi batterie elettriche

Le batterie elettriche prevedono una protezione attiva contro il surriscaldamento, tramite l'installazione di un termostato di sicurezza posto all'interno della batteria elettrica stessa.

Qualora il termostato di sicurezza rilevi una temperatura superiore a 135 °C, interverrà interrompendo il funzionamento della stessa.

L'apertura dell'ingresso digitale dall'allarme genererà l' "Allarme termostato sicurezza batteria elettrica" che fermerà la regolazione del riscaldamento. Il termostato è a riarmo manuale pertanto dovrà essere ripristinato al fine di rimuovere l'allarme.

8.18 Ingressi digitali configurabili

8.18.1 Cenni preliminari

Il c-pro 3 NODE kilo CLOSE è in grado di gestire fino a quattro ingressi digitali configurabili in base alle esigenze dell'utilizzatore.

Tramite il parametro "Ingresso configurabile (1-2-3-4)" (Setup costruttore - Configurazione ingressi digitali) è possibile configurare uno dei quatto ingressi digitali a seconda delle esigenze d'impianto.

Tramite il parametro "Logica ingresso configurabile (1-2-3-4)" (Setup costruttore - Configurazione ingressi digitali) è possibile configurare la logica di cablaggio dell'ingresso tra N.C. - Normalmente Chiuso e N.O. - Normalmente Aperto.

8.18.2 Gestione ingressi digitali configurabili

Tramite il parametro "Ingresso configurabile (1-2-3-4)" (Setup costruttore - Configurazione ingressi digitali) è possibile configurare una delle seguenti tipologie di gestione:

TIPOLOGIE DI INGRESSI DIGITALI CONFIGURABILI			
GESTIONE	REAZIONE DEL SOFTWARE		
Allarme Fumo/Fuoco	Unità OFF		
Allarme generale pompa acqua	Pompa e raffreddamento OFF		
Allarme generale umidificatore	Umidificazione OFF		
Allarme generale ventilatori mandata	Unità OFF		
Allarme generale condensatore 1	Condensatore 1 OFF e compressore 1 OFF		
Allarme generale condensatore 2	Condensatore 2 OFF e compressore 2 OFF		
Allarme generale dry cooler	Dry cooler OFF e raffreddamento OFF		
Allarme generale moto-condensante	Raffreddamento OFF		
Allarme generico lieve	Solo allarme		
Allarme generico grave	Unità OFF		
STOP Raffreddamento	Raffreddamento OFF		
STOP Riscaldamento	Riscaldamento OFF		
STOP Umidificazione	Umidificazione OFF		
STOP Deumidificazione	Deumidificazione OFF		
STOP Riscaldamento e umidificazione	Riscaldamento OFF e umidificazione OFF		
STOP Raffreddamento, riscaldamento e umidificazione	Raffreddamento, riscaldamento e umidificazione OFF		
STOP Free cooling	Free cooling OFF		
Forzatura free cooling	Free cooling ON		

Forzatura 2° Sorgente unità ibride

8.19 Uscite digitali configurabili

8.19.1 Cenni preliminari

Il c-pro 3 NODE kilo CLOSE è in grado di gestire fino a quattro uscite digitali configurabili in base alle esigenze dell'utilizzatore.

Tramite il parametro "Uscita configurabile (1-2-3-4)" (Setup costruttore - Configurazione uscite digitali) è possibile configurare una delle quatto uscite digitali a seconda delle esigenze d'impianto.

2° Sorgente unità ibride ON

Tramite il parametro "Logica uscita configurabile (1-2-3-4)" (Setup costruttore - Configurazione uscite digitali) è possibile configurare la logica di funzionamento dell'uscita tra N.C. - Normalmente Chiuso e N.O. - Normalmente Aperto.

8.19.2 Gestione uscite digitali configurabili

Tramite il parametro "Uscita configurabile (1-2-3-4)" (Setup costruttore - Configurazione ingressi digitali) è possibile configurare una delle seguenti tipologie di gestione:

TIPOLOGIE DI USCITE DIGITALI CONFIGUIRABILI

Comando pompa acqua
Comando moto-condensante
Segnalazione stato unità
Segnalazione stato raffreddamento
Segnalazione stato riscaldamento
Segnalazione stato umidificazione
Segnalazione stato deumidificazione
Segnalazione stato Free cooling
Segnalazione allarme generale
Segnalazione allarme lieve
Segnalazione allarme grave
Segnalazione allarme filtri sporchi
Segnalazione allarme raffreddamento
Segnalazione allarme riscaldamento
Segnalazione allarme ventilatori
Segnalazione allarme temperatura

Segnalazione allarme umidità

Segnalazione allarme allagamento / scarico Condensa

8.20 Gestione allarmi componenti interni

8.20.1 Gestione allarme filtri aria

Il c-pro 3 NODE kilo CLOSE è in grado di gestire un allarme filtri aria, al fine di segnalare la presenza di filtri sporchi.

Qualora un filtro risultasse sporco, l'apposito sensore di pressione agirà sull'ingresso digitale di allarme filtri sporchi. Il *c-pro 3 NODE kilo CLOSE* genererà l' "Allarme filtri aria intasati". L'allarme filtri aria non ferma il normale funzionamento dell'unità.

8.20.2 Gestione allarme presenza acqua / pompa di scambio condensa

Il *c-pro 3* NODE kilo CLOSE è in grado di gestire un allarme presenza acqua, al fine di segnalare la presenza di acqua nell'unità. L'allarme acqua viene gestito da un rilevatore munito di sonda di presenza acqua, la cui installazione è a cura dell'utente. In presenza di pompa scarico condensa, l'allarme della pompa verrà inserito in serie all'allarme del rilevatore acqua.

Qualora venga rilevata la presenza di acqua o un allarme della pompa, il *c-pro 3 NODE kilo CLOSE* genererà l' "Allarme presenza acqua/ Pompa scarico condensa".

A seconda dell'impostazione del parametro "Gravità allarme presenza acqua" (Setup costruttore - Configurazione gestione Allarmi), l'intervento dell'allarme potrà fermare anche l'unità.

8.20.3 Gestione allarme fumo/fuoco

Il c-pro 3 NODE kilo CLOSE è in grado di gestire un allarme di presenza fumo o fuoco, al fine di spegnere l'unità.

Tramite il parametro "Ingresso configurabile (1-2-3-4)" (Setup costruttore - Configurazione ingressi digitali) è possibile configurare uno dei quatto ingressi digitali per gestire l'allarme fumo/fuoco.

Agendo sull'ingresso digitale di allarme, il *c-pro 3 NODE kilo CLOSE* genererà l' "Allarme presenza fumo/fuoco" che ferma il normale funzionamento dell'unità.

A seconda dell'impostazione del parametro "Tipologia reset allarme fumo/fuoco" (Setup costruttore – Configurazione gestione Allarmi), è possibile selezionare la tipologia di riarmo dell'allarme tra Manuale o Automatica.

8.20.4 Gestione allarme generico lieve e grave

Il *c-pro 3* NODE kilo CLOSE è in grado di gestire un allarme generico lieve o grave, che può essere destinato dall'utente a diversi scopi. Tramite il parametro "Ingresso configurabile (1-2-3-4)" (Setup costruttore - Configurazione ingressi digitali) è possibile configurare uno dei quatto ingressi digitali per gestire l'allarme generico lieve o grave.

Agendo sull'ingresso digitale di allarme, il *c-pro 3 NODE kilo CLOSE* genererà l' "Allarme generico lieve" o l' "Allarme generico grave". L'allarme generico lieve non ferma il normale funzionamento dell'unità. L'allarme generico grave ferma il normale funzionamento dell'unità.

8.21 Gestione della calibrazione delle sonde

È possibile che, a seconda delle esigenze d'impianto, sia necessario calibrare il valore delle sonde installate all'interno dell'unità. A questo scopo *c-pro 3 NODE kilo CLOSE* è in grado di gestire un valore di calibrazione delle sonde che verrà sommato alla lettura reale. Tramite il parametro "**Temperatura ripresa**" (Setup utente - Calibrazione sonde) è possibile calibrare la sonda di temperatura di ripresa.

Tramite il parametro "Temperatura mandata" (Setup utente - Calibrazione sonde) è possibile calibrare la sonda di temperatura di mandata.

Tramite il parametro "Umidità" (Setup utente - Calibrazione sonde) è possibile calibrare la sonda di umidità.

Tramite il parametro "Pressione differenziale aria" (Setup utente - Calibrazione sonde) è possibile calibrare il sensore di pressione differenziale aria.

Tramite il parametro "Temperatura acqua IN/Free cooling" (Setup utente - Calibrazione sonde) è possibile calibrare la sonda di temperatura acqua in ingresso / free cooling.

Tramite il parametro "Temperatura acqua OUT" (Setup utente - Calibrazione sonde) è possibile calibrare la sonda di temperatura acqua in uscita.

8.22 Gestione della comunicazione seriale MODBUS RTU SLAVE

Il regolatore *c-pro 3 NODE kilo CLOSE* è dotato di un'uscita seriale RS485 per il collegamento a sistemi di supervisione/BMS, tramite protocollo MODBUS RTU slave. Per maggiori dettagli fare riferimento ai capitoli successivi.

Tramite il parametro "Indirizzo MODBUS" (Setup utente - Supervisione) è possibile impostare l'indirizzo seriale dell'unità per l'interfacciamento con la rete MODBUS.

Tramite il parametro "Baudrate MODBUS" (Setup utente - Supervisione) è possibile impostare la velocità di comunicazione dell'unità per l'interfacciamento con la rete MODBUS.

8.23 Modifica della password di accesso

I menu di gestione dei parametri sono protetti da password. È possibile modificare tali password secondo le esigenze dell'utente. Se modificate, le password originali non saranno più valide.

Tramite il parametro "**Password utente**" (Setup utente - Password) è possibile modificare la password di accesso al menu Utente. Tramite il parametro "**Password costruttore**" (Setup costruttore - Password) è possibile modificare la password di accesso al menu **Costruttore**.

8.24 Cancellazione dello storico allarmi e delle ore di funzionamento

8.24.1 Cancellazione dello storico allarmi

Durante le operazioni di manutenzione dell'unità è possibile che si renda necessario dover cancellare lo storico degli allarmi memorizzati nel *c-pro 3* NODE kilo CLOSE.

Tramite il parametro "Cancellazione storico allarmi" (Cancellazione storico - Storico allarmi) è possibile cancellare lo storico degli allarmi memorizzati.

L'accesso alla cancellazione dello storico allarmi è possibile solo con un accesso Costruttore.

8.24.2 Cancellazione delle ore di funzionamento

Durante le operazioni di manutenzione dell'unità è possibile che si renda necessario dover cancellare le ore di funzionamento dei componenti principali, memorizzate nel *c-pro 3 NODE kilo CLOSE*.

Tramite il parametro "Ore unità" (Cancellazione storico - Ore di funzionamento) è possibile cancellare le ore di funzionamento dell'unità.

Tramite il parametro "Compressore 1" (Cancellazione storico - Ore di funzionamento) è possibile cancellare le ore di funzionamento del compressore 1.

Tramite il parametro "Compressore 2" (Cancellazione storico - Ore di funzionamento) è possibile cancellare le ore di funzionamento del compressore 2.

Tramite il parametro "Valvola acqua" (Cancellazione storico - Ore di funzionamento) è possibile cancellare le ore di funzionamento della valvola acqua.

Tramite il parametro "**Resistenze elettriche**" (Cancellazione storico - Ore di funzionamento) è possibile cancellare le ore di funzionamento delle resistenze elettriche.

Tramite il parametro "Umidificatore" (Cancellazione storico - Ore di funzionamento) è possibile cancellare le ore di funzionamento dell'umidificatore.

Tramite il parametro "Free cooling" (Cancellazione storico - Ore di funzionamento) è possibile cancellare le ore di funzionamento in free cooling.

Tramite il parametro "Dry cooler" (Cancellazione storico - Ore di funzionamento) è possibile cancellare le ore di funzionamento del dry cooler.

Tramite il parametro "Condensatore 1" (Cancellazione storico - Ore di funzionamento) è possibile cancellare le ore di funzionamento del condensatore 1.

Tramite il parametro "Condensatore 2" (Cancellazione storico - Ore di funzionamento) è possibile cancellare le ore di funzionamento del condensatore 2.

L'accesso alla cancellazione dello storico allarmi è possibile solo con un accesso Costruttore.

9 RETE MODBUS MASTER DI CONTROLLO DEI COMPONENTI

9.1 Cenni preliminari

I microprocessori *c-pro 3 NODE kilo CLOSE* utilizzano una rete MODBUS master per il controllo dei dispositivi installati all'interno dell'unità. Tramite la rete MODBUS master vengono interfacciati i seguenti dispositivi:

- Ventilatori di mandata aria EC.
- Schede di controllo valvole di espansione elettronica EVDrive.

La rete di controllo MODBUS master viene realizzata durante il montaggio dell'unità presso la linea di produzione (vedi schema elettrico per maggiori dettagli).

9.2 Indirizzamento dei dispositivi della rete MODBUS master

L'indirizzamento dei componenti collegati alla rete MODBUS master viene effettuato in fase di collaudo presso lo stabilimento. In caso di sostituzione i componenti verranno inviati già configurati per il collegamento alla rete MODBUS master. Solamente i ventilatori saranno inviati non pre-configurati. La configurazione dell'indirizzo dei ventilatori avverrà tramite una funzione di autoindirizzamento.

Nella seguente tabella sono riportati gli indirizzi dei singoli componenti che possono essere presenti nella rete MODBUS master:

INDIRIZZAMENTO DELLA RETE MODBUS MASTER			
DISPOSITIVO	INDIRIZZO		
EVDrive compressore 1	2		
EVDrive compressore 2	3		
Ventilatore 1	6		
Ventilatore 2	7		
Ventilatore 3	8		
Ventilatore 4	9		
Ventilatore 5	10		
Ventilatore 6	20		
Ventilatore 7	21		
Ventilatore 8	22		
Ventilatore 9	23		
Ventilatore 10	24		

9.2.1 Auto-indirizzamento dei ventilatori in caso di sostituzione

In caso di sostituzione dei ventilatori, il microprocessore *c-pro 3* NODE kilo CLOSE è dotato di una funzione di controllo ed autoindirizzamento della rete MODBUS master.

In presenza di un allarme di comunicazione di uno o più ventilatori il microprocessore *c-pro 3 NODE kilo CLOSE* inizierà a controllare se in rete sono presenti nuovi ventilatori.

Se il microprocessore *c-pro 3 NODE kilo CLOSE* troverà in rete un ventilatore non configurato (nuovo), provvederà a modificare l'indirizzo con quello del ventilatore difettoso. Qualora vi fossero più ventilatori in allarme verrà dato al ventilatore il primo indirizzo libero.

Durante il processo di auto indirizzamento i NUOVI VENTILATORI dovranno essere collegati UNO ALLA VOLTA.

RETE CANBUS DI CONTROLLO DELLE UNITÀ 10

10.1 Cenni preliminari

Il c-pro 3 NODE kilo CLOSE è in grado di gestire fino a dodici unità collegate tra loro a formare una rete locale. La rete locale permette uno scambio di informazioni tra le unità che potranno lavorare all'unisono per gestire l'ambiente condizionato, garantendo inoltre un livello di sicurezza più elevato dividendosi in carico termico.

La gestione della rete è di tipo Multi-Master, cioè non esiste un'unità con il compito di definire le azioni delle altre. Tutte le unità presenti in rete hanno il compito di monitorare lo stato generale, intervenendo all'unisono nelle regolazioni da intraprendere.

10.2 Indirizzamento unità in rete locale

Tutte le unità collegate in rete locale devono avere un indirizzo univoco che le identifichi all'interno della rete. Tramite il parametro "Indirizzo di rete" (Setup costruttore - Configurazione rete locale) è possibile selezionare l'indirizzo di rete dell'unità, secondo la seguente logica:

INDIRIZZAMENTO DI RETE				
INDIRIZZO UNITÀ	τιρο	ID	ID DISPLAY	ID DISPLAY REMOTO
13	Stand alone	13	99	
1	Unità 1	1	101	
2	Unità 2	2	102	
3	Unità 3	3	103	
4	Unità 4	4	104	
5	Unità 5	5	105	
6	Unità 6	6	106	126
7	Unità 7	7	107	
8	Unità 8	8	108	
9	Unità 9	9	109	
10	Unità 10	10	110	
11	Unità 11	11	111	
12	Unità 12	12	112	

La modifica dell'indirizzo di rete può avvenire solamente con il c-pro 3 NODE kilo CLOSE non connesso ad altre unità. Qualora le unità risultassero collegate tra loro bisognerà prima disconnettere i cavi di rete. Per maggiori dettagli sul collegamento della rete fare riferimento allo schema elettrico e al manuale d'installazione delle unità

10.3 Tipologie di rete locale

Tramite il parametro "Funzionamento in rete" (Setup costruttore - Configurazione rete locale) è possibile selezionare il funzionamento in rete locale.

10.4 Regolazione rete locale

10.4.1 Cenni preliminari

La caratteristica principale della rete locale è quella di avere parte delle unità in funzione e parte delle unità ferme in attesa di intervenire in caso di bisogno (Stand-by).

Tramite il parametro "Numero unità in rete" (Setup costruttore - Configurazione rete locale) è possibile selezionare il numero di unità totali presenti in rete locale.

Tramite il parametro "Numero unità in stand-by" (Setup costruttore - Configurazione rete locale) è possibile selezionare il numero di unità che resteranno spente in attesa di intervento. Non è possibile impostare tutte le unità in stand-by, dovrà esserci sempre almeno un'unità funzionante.

10.4.2 Rotazione automatica delle unità

Al fine di bilanciare le ore di funzionamento delle unità è possibile impostare una funzione di rotazione automatica che permetterà di scambiare il ruolo delle unità.

Tramite il parametro "Abilita rotazione unità" (Setup costruttore - Configurazione rete locale) è possibile abilitare la rotazione di ruolo dell'unità.

Tramite il parametro "Intervallo di rotazione" (Setup costruttore - Configurazione rete locale) è possibile impostare l'intervallo di tempo tra le rotazioni di ruolo.

10.4.3 Attivazione delle unità in stand-by in caso di allarme

Lo scopo delle unità in Stand-by è quello di intervenire in sostituzione delle unità in funzione in presenza di un problema critico.

A tal fine, in caso una delle unità in funzione fosse fermata a causa di un allarme grave, una delle unità in Stand-by si attiverà per sopperire alla mancanza.

Qualora vi siano più unità in Stand-by, verrà attivata l'unità con il minor numero di ore di funzionamento. Qualora le unità avessero le stesse ore di funzionamento, verrà attivata l'unità con l'indirizzo di rete più basso.

10.4.4 Gestione del sistema di supporto alla regolazione di temperatura

Nel funzionamento in rete è possibile impostare una funzione di gestione di supporto alla regolazione di temperatura.

Tramite il parametro "Abilita supporto" (Setup costruttore - Configurazione rete locale) è possibile abilitare l'intervento in supporto delle unità in stand-by.

Tramite il parametro "**Tempo inserimento supporto**" (Setup costruttore - Configurazione rete locale) è possibile impostare l'intervallo di tempo per l'attivazione delle unità in supporto.

Qualora in una o più unità in funzione la temperatura regolata superasse il limite della banda proporzionale, le unità in Stand-by verranno attivate in sequenza per poter far ritornare la temperatura al set-point. L'attivazione avverrà dopo il tempo di inserimento impostato.

Qualora vi siano più unità in Stand-by, verrà attivata l'unità con il minor numero di ore di funzionamento. Qualora le unità avessero le stesse ore di funzionamento, verrà attivata l'unità con l'indirizzo di rete più basso.

Le unità attivate regoleranno la temperatura a seconda delle proprie impostazioni, indipendentemente dalle unità in funzione che hanno richiesto l'attivazione. Al fine di migliorare la regolazione è possibile utilizzare i funzionamenti descritti nei prossimi capitoli.

Al raggiungimento del set-point le unità verranno fermate e torneranno in Stand-by.
10.5 Sistema di attivazione con On/Off dinamico

10.5.1 Cenni preliminari

Tutte le unità in rete locale possono essere attivate o disattivate singolarmente come avviene per le unità stand-alone. Al fine di ridurre i tempi di attivazione dell'intera rete locale è possibile scegliere di attivare o disattivare tutte le unità contemporaneamente.

Tramite il parametro "**On/Off dinamico**" (Setup costruttore - Configurazione rete locale) è possibile abilitare l'accensione e lo spegnimento contemporaneo di tutte le unità presenti in rete.

La funzione di On/Off dinamico è particolarmente indicata per evitare di avere errori nell'attivazione delle unità stand-by.

10.5.2 Ingresso in rete delle unità

Qualora non sia presente il sistema di On/Off dinamico, quando una o più unità vengono inserite in rete la regolazione dei componenti subirà un reset per evitare problemi di disallineamento.

Pertanto i ventilatori torneranno alla velocità minima o a quella di partenza (solo per regolazione a pressione costante), mentre la regolazione di temperatura verrà ricalcolata qualora sia impostato un sistema proporzionale + integrale + derivativo.

10.6 Sistema di set-point dinamico

In tutte le unità in rete locale, il set-point di temperatura può essere modificato singolarmente come avviene per le unità stand-alone. Qualora tutte le unità debbano regolare con il medesimo set-point, è possibile attivare la funzione di set-point dinamico che permetterà di modificare i valori di set-point contemporaneamente in tutte le unità della rete.

Tramite il parametro "**Set-point dinamico**" (Setup costruttore - Configurazione rete locale) è possibile abilitare la modifica contemporanea del set-point in tutte le unità presenti in rete.

La funzione di set-point dinamico è particolarmente indicata per evitare impostazioni erronee dei set-point della rete che potrebbero creare situazioni di conflitto nella regolazione.

10.7 Sistema di gestione delle medie di temperatura, umidità e pressione aria

Le unità in rete locale sono solitamente utilizzate per la gestione di un singolo ambiente. In questi casi è possibile impostare un sistema di gestione della regolazione tramite l'utilizzo dei valori medi rilevati dalle unità presenti in rete.

L'utilizzo della funzione di media permette di ottenere una regolazione omogenea dei componenti delle singole unità, che verranno attivati contemporaneamente su tutte le unità presenti in rete.

Questa funzione permette inoltre di evitare problematiche di conflitto di regolazione, nelle quali due o più unità si trovano a regolare in maniera opposta, per esempio una riscaldando e l'altra raffreddando contemporaneamente.

Tramite il parametro "Media delle temperature" (Setup costruttore - Configurazione rete locale) è possibile abilitare il calcolo della media delle temperature rilevate dall'unità, in relazione alla regolazione di temperatura.

Tramite il parametro "Media delle umidità" (Setup costruttore - Configurazione rete locale) è possibile abilitare il calcolo della media delle umidità rilevate dall'unità, in relazione alla regolazione di umidità.

Tramite il parametro "Media delle pressioni ambiente" (Setup costruttore - Configurazione rete locale) è possibile abilitare il calcolo della media delle pressioni ambiente rilevate dall'unità, in relazione alla regolazione di pressione aria costante.

10.7.1 Esclusione dal calcolo della media

Al fine di evitare problematiche al calcolo della media dei valori, da essa verranno automaticamente escluse le unità:

- Spente (OFF): Le unità poste in OFF saranno automaticamente escluse dal calcolo della media.
- In Stand-by: Le unità in stand-by parteciperanno attivamente al calcolo della media solamente quando saranno attive in sostituzione o in supporto
- In allarme grave: Le unità poste in OFF DA ALLARME saranno automaticamente escluse dal calcolo della media.
- Con sonde in allarme: Le unità poste presentino sonde rotte, saranno automaticamente escluse dal calcolo della media relativa alla sonda che risulterà in allarme.

Al ripristinarsi delle normali condizioni operative dell'unità, essa ritornerà automaticamente a far parte del calcolo della media.

10.8 Gestione allarme mancanza di comunicazione rete locale

Le unità controllano costantemente lo stato della comunicazione in rete locale. Qualora vi sia un problema e la connessione rimanesse assente per più di 30 s, il *c-pro 3 NODE kilo CLOSE* genererà l' "Allarme comunicazione rete locale".

In caso di allarme l'unità continuerà a funzionare regolarmente come se fosse in stand-alone, senza interrompere in alcun modo la regolazione dei componenti.

Al ripristinarsi del collegamento in rete l'allarme verrà ripristinato automaticamente e l'unità tornerà a regolare a seconda della tipologia di rete locale.

11 PARAMETRI DEL SOFTWARE DI REGOLAZIONE E LORO MODIFICA

11.1 Accesso ai menu protetti da password

Per accedere ai parametri dei MENU PROTETTI è necessario inserire, all'interno del MENU PARAMETRI, la corretta password di LOGIN:

- PARAMETRI UTENTE: Password di default 1 (Modificabile)
- PARAMETRI COSTRUTTORE: Password di default 2 (Modificabile)

11.1.1 Inserimento della password di login

- Selezionare il MENU LOGIN con i tasti UP (△) e DOWN (▽) e premere il tasto ENTER (←) per accedere al menu.
- È possibile selezionare i singoli digit della password con i tasti UP (() e DOWN ()
- Per modificare il digit premere il tasto ENTER (🕶); quando selezionato, il digit inizierà a lampeggiare.
- Usando il tasto UP (() e DOWN () è possibile modificare il digit della password.
- Per memorizzare il valore appena inserito, è sufficiente premere il tasto ENTER (🕶).
- Invece, se non si volesse salvare il parametro, sarà sufficiente premere il tasto ESC (📟).

11.2 Accesso ai menu dei parametri di regolazione

• Selezionare il MENU al quale si vuole accedere con i tasti UP (△) e DOWN (▽) e premere il tasto ENTER (•) per accedere al MENU.

I MENU PARAMETRI sono suddivisi in diversi GRUPPI, il cui nome descrive la funzione dei parametri che contiene.

Per accedere alla modifica dei PARAMETRI di ogni gruppo, è sufficiente selezionare il GRUPPO al quale si vuole accedere con i tasti UP (() e DOWN () e premere il tasto ENTER () per accedere al GRUPPO.

11.3 Modifica dei parametri di regolazione

- Selezionare il **PARAMETRO** che si vuole modificare con i tasti **UP** (△) e **DOWN** (▽)
- Per modificare il parametro premere il tasto ENTER (🕶); quando selezionato, il parametro inizierà a lampeggiare.
- Usando il tasto UP (△) e DOWN (▽) è possibile modificare il parametro.
- Per memorizzare il valore appena inserito, è sufficiente premere il tasto ENTER (🕑).
- Invece, se non si volesse salvare il parametro, sarà sufficiente premere il tasto ESC (📟).

11.4 Uscita dai gruppi, dai menu e dal menu principale

• È possibile uscire dai GRUPPI, dai MENU e dal MENU PRINCIPALE premendo il tasto ESC (📟).

12 ELENCO DEI PARAMETRI DI CONFIGURAZIONE

La seguente tabella illustra il significato dei parametri di configurazione dei dispositivi.

12.1 Menu set-point: modifica dei set-point

PARAM.	DEFAULT	MIN.	MAX.	U.M.	SETPOINT
SP1	22,0	SL1	SL2	°C/°F (1)	Set-point temperatura
SP2	50	SL3	SL4	%Rh	Set-point umidità

12.2 Setup utente: impostazioni del programma di funzionamento

PARAM.	DEFAULT	MIN.	MAX.	U.M.	LINGUA
LNG	Italiano	0	1		0=Italiano, 1=inglese
PARAM.	DEFAULT	MIN.	MAX.	U.M.	SET-POINT VENTILAZIONE
VS1	2.200	500	99000	m³/h	Set-point portata aria
VS2	20	-900	900	Pa	Set-point pressione aria
PARAM.	DEFAULT	MIN.	MAX.	U.M.	REGOLAZIONE TEMPERATURA
TR1	0	0	1		Sensore di regolazione 0= Ripresa 1=Mandata
TR2	0	0	2		Tipo di regolazione O= P 1= PI 2= PID
TR3	2,0	0,1	60	°C/°F (1)	Banda proporzionale
TR4	0	0	9999	S	Tempo di integrazione
TR5	0	0	9999	S	Tempo di derivazione
TR6	10,0	0,0	20,0	°C/°F (1)	Offset allarme alta temperatura
TR7	10,0	0,0	20,0	°C/°F (1)	Offset allarme bassa temperatura
PARAM.	DEFAULT	MIN.	MAX.	U.M.	REGOLAZIONE TEMPERATURA LIMITE
LT1	30,0	-15,0	90,0	°C/°F (1)	Limite superiore temperatura limite

LT2	8,0	-15,0	90,0	°C/°F (1)	Limite inferiore temperatura limite
PARAM.	DEFAULT	MIN.	MAX.	U.M.	REGOLAZIONE UMIDITÀ
HR1	10	1	50	%Rh	Banda proporzionale deumidificazione
HR2	10	1	50	%Rh	Banda proporzionale umidificazione
HR3	20	0	100	%Rh	Offset allarme alta umidità ripresa
HR4	20	0	100	%Rh	Offset allarme bassa umidità ripresa
PARAM.	DEFAULT	MIN.	MAX.	U.M.	REGOLAZIONE UMIDIFICATORE
HM1	1	0	1		Abilitazione umidificazione 0= No 1= Si
PARAM.	DEFAULT	MIN.	MAX.	U.M.	REGOLAZIONE FREE COOLING E UNITÀ IBRIDE
FC1	4,0	1,0	30,0	°C/°F (1)	Delta free cooling
UI1	7,0	1,0	30,0	°C/°F (1)	Set-point acqua unità ibride
UI2	0,5	0,1	20,0	°C/°F (1)	Banda acqua unità ibride
UI3	0	0	1		Scambio sorgente unità ibride 0= No 1= Si
PARAM.	DEFAULT	MIN.	MAX.	U.M.	REGOLAZIONE CONDENSATORI
CR1	45,0	30,0	65,0	°C/°F (1)	Set-point condensazione
CR2	5,0	1,0	40,0	°C/°F (1)	Banda proporzionale condensazione
CR3	1,0	0,1	50,0	°C/°F (1)	Aumento set-point condensazione
CR4	55,0	0,1	65,0	°C/°F (1)	Massimo set-point condensazione
PARAM.	DEFAULT	MIN.	MAX.	U.M.	REGOLAZIONE DRY COOLER
DC1	10,0	1,0	65,0	°C/°F (1)	Set-point dry cooler
DC2	5,0	0,5	20,0	°C/°F (1)	Banda proporzionale dry cooler
DC3	1,0	0,1	50,0	°C/°F (1)	Aumento set-point dry cooler
DC4	50,0	0,1	65,0	°C/°F (1)	Massimo set-point dry cooler

PARAM.	DEFAULT	MIN.	MAX.	U.M.	CALIBRAZIONE SONDE
PO1	0,0	-10,0	10,0	°C/°F (1)	Temperatura ripresa
PO2	0,0	-10,0	10,0	°C/°F (1)	Temperatura mandata
PO3	0	-10	10	%Rh	Umidità ripresa
PO4	0	-100	100	Pa	Pressione differenziale aria
PO5	0,0	-10,0	10,0	°C/°F (1)	Temperatura acqua IN / Free cooling
PARAM.	DEFAULT	MIN.	MAX.	U.M.	SUPERVISIONE ESTERNA
SU1	1	1	254		Indirizzo MODBUS
SU2	4	0	7	Baud	Baudrate MODBUS 0= 1200 1= 2400 2= 4800 3= 9600 4= 19200 5= 28800 6= 38400 7= 57600
SU10	192.168.0.2	0.0.0.0	255.255.255.255		Indirizzo IP
SU11	255.255.255.0	0.0.0.0	255.255.255.255		Subnet Mask
SU12	192.168.0.1	0.0.0.0	255.255.255.255		Gateway
SU13	127	1	4194303		Bancet IP identificatore dispositivo
SU14	47808	47808	47823		Bancet IP numero porta
SU15	255.255.255.255	0.0.0.0	255.255.255.255		Bacnet Broadcast Management Device (BBMD) indirizzo IP
SU16	47808	47808	47823		Bacnet Broadcast Management Device (BBMD) numero porta
SU17	300	15	65535	Sec	Bacnet Broadcast Management Device (BBMD) tempo del servizio
PARAM.	DEFAULT	MIN.	MAX.	U.M.	PASSWORD
UPW	1	0	9999		Password Utente

12.3 Loop setup costruttore: configurazione dei componenti

PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE SONDE
PR1	0	0	1		Pressione differenziale aria 0= No 1= Sì
PR2	0	0	1		Umidità 0= No 1= Sì
PR3	0	0	1		Temperatura aria ripresa 0= No 1= Sì
PR4	0	0	1		Temperatura aria mandata 0= No 1= Sì
PR5	0	0	1		Temperatura acqua IN / Free cooling 0= No 1= Sì
PR6	0	0	1		Temperatura scarico compressore 1 (solo se presenti su c-pro 3 0= No 1= Sì
PR7	0	0	1		Pressione condensazione compressore 1 (solo se presenti su c-pro 3) 0= No 1= Sì
PR8	0	0	1		Temperatura scarico compressore 2 (solo se presenti su c-pro 3) 0= No 1= Sì
PR9	0	0	1		Pressione condensazione compressore 2 (solo se presenti su c-pro 3) 0= No 1= Si
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE INGRESSI DIGITALI
DI 1	0	0	29		Ingresso configurabile 1 0=No 1=Stato serrande 2=Filtri sporchi 3=OFF remoto 4=Allarme allagamento 5=Fumo/Fuoco 6=Allarme pompa acqua 7=Allarme Umidificatore esterno

				8=Allarme generale venitlatori
				9=Allarme condensatore1
				10=Allarme condensatore2
				11=Allarme Dry Cooler
				12=Allarme Motocondensante
				13=Allarme Generale Batteria Elettrica
				14=Allarme Elusso acqua
				15-Allarme Termico Cmp1
				15-Allarma Termico Cmp1
				18=Allarme Alta Pressione Cmp2
				19=Allarme Bassa Pressione Cmp1
				20=Allarme Bassa Pressione Cmp2
				21=STOP freddo
				22=STOP caldo
				23=STOP umidifica
				24=STOP deumidifica
				25=STOP caldo+umidifica
				26=STOP freddo+caldo+umidifica
				27=STOP free cooling
				28=Forza free cooling
				29=Forza unità ibride
				Logica ingresso configurabile 1
DL1	0	0	1	 0= N.O.
				1 = N.C.
				Ingrosso configurabilo 2
210	0	0	20	Por il valoro del parametro, faro riferimento all'elence di
DIZ	0	0	29	 Per il valore dei parametro, rare menmento all'elenco di
				"Ingresso configurabile 1"
				Logica ingresso configurabile 2
DL2	0	0	1	 0= N.O.
				1 = N.C.
				Ingresso configurabile 3
DI3	0	0	29	 Per il valore del parametro, fare riferimento all'elenco di
				"Ingresso configurabile 1"
				Logica ingresso configurabile 3
DL3	0	0	1	 0= N.O.
220	0	Ū		1 – N C
				1 - N.G.
				Ingresso configurabile 4
DI4	0	0	29	 Per il valore del parametro, fare riferimento all'elenco di
				"Ingresso configurabile 1"
	0	0	1	
DL4	U	U	1	 U = N.U.
				I = IN.C.

DI5	0	0	29	 Ingresso configurabile 5 Per il valore del parametro, fare riferimento all'elenco di "Ingresso configurabile 1"
DL5	0	0	1	 Logica ingresso configurabile 5 0= N.O. 1= N.C.
DI6	0	0	29	 Ingresso configurabile 6 Per il valore del parametro, fare riferimento all'elenco di "Ingresso configurabile 1"
DL6	0	0	1	 Logica ingresso configurabile 6 0= N.O. 1= N.C.
DI7	0	0	29	 Ingresso configurabile 7 Per il valore del parametro, fare riferimento all'elenco di "Ingresso configurabile 1"
DL7	0	0	1	 Logica ingresso configurabile 7 0= N.O. 1= N.C.
DI8	0	0	29	 Ingresso configurabile 8 Per il valore del parametro, fare riferimento all'elenco di "Ingresso configurabile 1"
DL8	0	0	1	 Logica ingresso configurabile 8 0= N.O. 1= N.C.
DI9	0	0	29	 Ingresso configurabile 9 Per il valore del parametro, fare riferimento all'elenco di "Ingresso configurabile 1"
DL9	0	0	1	 Logica ingresso configurabile 9 0= N.O. 1= N.C.
DL10	0	0	1	 Logica ingresso EV protezione termica compressore 0= N.O. 1= N.C.
DL11	0	0	1	 Logica ingresso EV alta pressione compressore 0= N.O. 1= N.C.

DL12	O	0	1		Logica ingresso EV bassa pressione compressore 0= N.O. 1= N.C.
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE USCITE DIGITALI
DO1	0	0	11		Uscita configurabile 1 0= No 1= Comando compressore 1 2= Comando compressore 2 3= Comando pompa acqua, 4= Comando moto-condensante 5= Stato Unità, 6= Stato Unità, 6= Stato freddo 7= Stato caldo 8= Stato umidificazione 9= Stato deumidificazione 10= Stato free cooling 11= Allarme generale
DL1	0	0	1		Logica uscita configurabile 1 0= N.O. 1= N.C.
DO2	0	0	11		Uscita configurabile 2 Per il valore del parametro, fare riferimento all'elenco di "Uscita configurabile 1"
DL2	0	0	1		Logica uscita configurabile 2 0= N.O. 1= N.C.
DO3	0	0	11		 Uscita configurabile 3 Per il valore del parametro, fare riferimento all'elenco di "Uscita configurabile 1"
DL3	0	0	1		Logica uscita configurabile 3 0= N.O. 1= N.C.
DO4	0	0	11		 Uscita configurabile 4 Per il valore del parametro, fare riferimento all'elenco di "Uscita configurabile 1"
DL4	0	0	1		Logica uscita configurabile 4 0= N.O. 1= N.C.
DO5	0	0	11		 Uscita configurabile 5 Per il valore del parametro, fare riferimento all'elenco di "Uscita configurabile 1"

DL5	0	0	1		Logica uscita configurabile 5 0= N.O. 1= N.C.
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE VENTILAZIONE
VE1	1	1	10		Numero di ventilatori
VE2	2	0	3		Tipo ventilatori 0= On-Off 1= Analogici 2= MODBUS EBM 3= MODBUS ZIEHL
VE3	1	0	3		Tipo di regolazione O= Velocità fissa 1= Regolazione Freddo/Caldo 2= Portata costante 3= Pressione costante
VE4	100	10	100	%	Velocità massima ventilatori
VE5	40	10	100	%	Velocità minima ventilatori
VE6	60	0	100	%	Velocità di start-up ventilatori
VE7	0	0	9999	S	Tempo di start-up ventilatori
VE8	72	0	1000		Coefficiente portata aria
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE TIPO MACCHINA
UC1	0	0	4		Tipo Macchina 0= Espansione diretta 1= Evaporatore 2= Acqua refrigerata 3= Free cooling 4= Unità ibride
UC2	1	0	1		Selezione Fonte Primaria 0= Espansione diretta (DX) 1= Acqua refrigerata (CW)
UC3	0	0	1		Selezione Fonte Secondaria
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE ESPANSIONE DIRETTA
DX1	1	1	2		Numero compressori

DX2	0	0	1		Abilita inverter compressore 0= No 1= Si
DX3	0	0	1		Tipo rotazione compressori 0= FIFO+HS 1= LIFO+HS
DX4	0	0	1		Abilita EVDRIVE O= No 1= Sì
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE RISCALDAMENTO
HE1	0	0	3		Riscaldamento 0= No 1= Resistenze a stadi 2= Batteria modulante 3= Valvola acqua
HE2	1	1	2		Numero stadi batteria elettrica
HE3	1	0	1		Tipo di inserimento stadi 0= Lineare 1= Gradini
PARAM.	DEFAULT	MIN.	MAX.	U.M.	REGOLAZIONE UMIDITÀ
HU1	100	0	100	%	Percentuale produzione umidificazione
HU2	1	0	1		Umidificazione e freddo insieme 0= No 1= Si
HU3	1	0	1		Deumidificazione 0= No 1= Sì
HU4	100	0	100	%	Soglia intervento deumidificazione
HU5	60	0	100	%	Limite minimo deumidificazione
HU6	0	0	1		Deumidificazione parziale 0= No 1= Si
HU7	4,0	0,1	20,0	°C/°F (1)	Offset blocco deumidificazione
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE REGOLAZIONE CONDENSAZIONE

CS1	0	0	2		Regolazione condensatori 0= No 1= Proporzionale 2= AutoSet-point
CS2	10	0	100	%	Richiesta minima condensazione
CS3	100	0	100	%	Richiesta massima condensazione
CS4	50	0	100	%	Richiesta di start-up condensazione
CS5	10	0	999	S	Tempo di start-up condensazione
CS6	100	0	100	%	Forzatura con errore sonda
CS7	5	1	900	Min	Tempo AutoSet-point
CS8	20	0	50	%	Richiesta minima AutoSet-point
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE REGOLAZIONE DRY COOLER
DS1	0	0	2		Regolazione dry cooler 0= No 1= Proporzionale 2= AutoSet-point
DS2	10	0	100	%	Velocità minima ventilatori
DS3	100	0	100	%	Velocità massima ventilatori
DS4	50	0	100	%	Velocità start-up ventilatori
DS5	10	0	999	S	Tempo di start-up ventilatori
DS6	2,0	0,0	10,0	°C/°F (1)	Cut-off ventilatori
DS7	100	0	100	%	Forzatura con errore sonda
DS8	5	1	900	Min	Tempo AutoSet-point
DS9	20	0	50	%	Velocità minima AutoSet-point
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE POMPA ACQUA
PS1	0	0	2		Tipo di regolazione pompa O= No 1= Unità ON 2= Richiesta Freddo

PS2	60	0	999	S	Ritardo spegnimento pompa
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE LIMITI SET-POINT
SL1	15,0	-40,0	150,0	°C/°F (1)	Limite minimo set-point temperatura
SL2	40,0	-40,0	150,0	°C/°F (1)	Limite massimo set-point temperatura
SL3	20	0	100	%Rh	Limite minimo set-point umidità
SL4	75	0	100	%Rh	Limite massimo set-point umidità
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE ZONA NEUTRA
ZM1	0,2	0,0	10,0	°C/°F (1)	Zona neutra temperatura
ZM2	2	0,0	20,0	%	Zona neutra umidità
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONI RETE LOCALE
LN1	17	1	17		Indirizzo di rete
LN2	0	0	1		Funzionamento in rete O= No 1= Si
LN3	2	2	16		Numero unità in rete
LN4	0	0	15		Numero unità in stand-by
LN5	0	0	1		Abilita rotazione unità 0= No 1= Sì
LN6	12	1	9999	h	Intervallo di rotazione
LN7	0	0	1		Abilita supporto O= No 1= Si
LN8	120	1	9999	S	Tempo inserimento supporto
LN9	1	0	1		On/Off dinamico 0= No 1= Si
LN10	1	0	1		Set-point dinamico 0= No 1= Sì

PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE GESTIONE ALLARMI
AS1	300	0	9999	S	Ritardo allarmi temperatura e umidità
AS2	150	0	9999	S	Ritardo allarme stato serrande
AS3	180	0	9999	S	Ritardo allarme bassa pressione compressori
AS4	60	0	9999	S	Ritardo allarme alta temperatura di scarico compressori
AS5	60	0	9999	S	Ritardo allarme bassa compressione compressori
AS6	1	0	1		Tipologia reset allarme fumo/fuoco 0= Automatico 1= Manuale
AS7	30	0	9999	S	Ritardo allarme flusso da start-up
AS8	50	0	9999	S	Ritardo allarme flusso
AS9	2	0	2		Allarme mancanza alimentazione Unità 0= No 1= Sì 2= Unità ON
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONI VARIE
BT1	0	0	2		Abilita blocco tasti O= No 1= Sì 2= Password utente
PARAM.	DEFAULT	MIN.	MAX.	U.M.	PASSWORD
MPW	2	0	9999		Password Costruttore

12.4 Loop setup avanzato: configurazione dei componenti

PARAM.	DEFAULT	MIN.	MAX.	U.M.	PARAMETRI
DP1	0	0	1		Ripristino valori default 0= No 1= Sì
PARAM.	DEFAULT	MIN.	MAX.	U.M.	BAUDRATE RETE LOCALE

BR1	2	1	4		Baud rate 1= 20K 2= 50K 3= 125K 4= 500K
PARAM.	DEFAULT	MIN.	MAX.	U.M.	UNITA' DI MISURA
MU1	0	0	1		Unità di misura temperatura 0= °C 1= °F
MU2	0	0	1		Unità di misura pressione Gas 0= Bar 1= PSI
PARAM.	DEFAULT	MIN.	MAX.	U.M.	TIPOLOGIA SONDE
PC1	1	0	4		Temperatura ambiente 0= PTC 1= NTC 2= NTC10K2 3=NTC10K3 4=PT100
PC2	1	0	4		Temperatura mandata 0= PTC 1= NTC 2= NTC10K2 3=NTC10K3 4=PT100
PC3	1	0	4		Temperatura acqua IN 0= PTC 1= NTC 2= NTC10K2 3=NTC10K3 4=PT100
PC7	1	0	3		Umidità ambiente 0= 0-20mA 1= 4-20mA 2=0-5V 3=0-10V
PC8	10	0	100	%Rh	Minimo umidità ambiente
PC9	90	0	100	%Rh	Massimo umidità ambiente

PC13	2	0	3		Pressione differenziale aria 0= 0-20mA 1= 4-20mA 2=0-5V 3=0-10V
PC14	0	-5000	5000	Ра	Minimo pressione differenziale aria
PC15	5000	-5000	5000	Pa	Massimo pressione differenziale aria
PC16	0.5	0	20,00	Pa	Minimo pressione differenziale aria
PC17	4.5	0	20,00	Pa	Massimo pressione differenziale aria
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE VENTILAZIONE
FA1	5	1	100	s	Velocità modulazione
FA2	100	100	900	m³/h	Zona morta portata
FA3	2	1	100	Pa	Zona morta pressione
FA4	1	1	10		Numero ventilatori MB in allarme per OFF macchina
FA5	20	0	9999	s	Ritardo ventilatore mandata ON da fine corsa serranda
PARAM.	DEFAULT	MIN.	MAX.	U.M.	TEMPERATURA LIMITE
LM1	0.2	-20,0	20,0	°C/°F (1)	Differenziale temperatura di mandata
PARAM.	DEFAULT	MIN.	MAX.	U.M.	REGOLAZIONE FREE COOLING
SF1	1	0,1	20,0	°C	Limite temperatura FC regolazione mandata
SF2	40	0	50	%	Soglia massima FC regolazione mandata
PARAM.	DEFAULT	MIN.	MAX.	U.M.	ACQUA REFRIGERATA
WS1	0	0	100	%	Apertura minima valvola
WS2	100	0	100	%	Apertura massima valvola
PARAM.	DEFAULT	MIN.	MAX.	U.M.	RISCALDAMENTO
HS1	0	0	100	%	Riscaldamento minimo
HS2	100	0	100	%	Riscaldamento massimo
HS3	5	0	99	S	Ritardo inserimento gradini

PARAM.	DEFAULT	MIN.	MAX.	U.M.	ESPANSIONE DIRETTA
XS1	5	0	23		Tipo refrigerante R22=0 R134A=1 R402A=2 R404A=3 R407A=4 R407C=5 R410A=6 R417A=7 R422A=8 R422D=9 R507A=10 R744=11 R438A=12 R401B=13 R290=14 R717=15 R1270=16 R32=17 R407F=18 R1234ZE=19 R448A=20 R449A=21 R452A=22 R455Ac=23
XS2	0	0	1		Presenza di bassa pressione 0= No 1= Si
XS3	4,0	0,0	10,0	Barg	Set-point bassa pressione
XS4	0,5	0,0	10,0	Barg	Differenziale bassa pressione
XS5	5	0	9999	S	Tempo minimo accensione tra un compressore e l'altro
XS6	180	0	9999	S	Tempo Minimo di OFF compressore
XS7	180	0	9999	S	Tempo Minimo di ON compressore
XS8	4	0	9999	Н	Max differenza ore compressori
XS9	1	0	50		Fattore rotazione ore
XS10	1	0	50		Fattore rotazione spunti
XS11	110,0	0,0	200,0	°C/°F (1)	Soglia protezione temperatura di scarico
XS12	115,0	0,0	200,0	°C/°F (1)	Soglia allarme temperatura di scarico

XS13	1=Sì	0	1		Condensazione a compressore acceso 0= No 1= Sì
XS14	30,0	25,0	100,0	°C/°F (1)	Set-point cut-off condensazione
XS15	2,0	0,0	10,0		Soglia allarme bassa compressione
XS16	0 = No	0	1		Abilita pump down 0= No 1= Sì
XS17	2,0	0,0	10,0	Barg	Soglia fine pump down
PARAM.	DEFAULT	MIN.	MAX.	U.M.	INVERTER COMPRESSORE
IS1	0	0	100	%	Velocità minima
IS2	100	0	100	%	Velocità massima
IS3	40	0	100	%	Velocità di partenza
IS4	20	0	200	rps	Decremento temperatura di scarico
PARAM.	DEFAULT	MIN.	MAX.	U.M.	VALVOLA ESPANSIONE 1

EV1	4	1	28		Tipo valvola 1 = Sporlan SER AA 2 = Sporlan SER A 3 = Sporlan SER B 4 = Sporlan SER C 5 = Sporlan SER D 6 = Sporlan SER I F 7 = Sporlan SERI G 8 = Sporlan SERI J 9 = Sporlan SERI L 11 = Sporlan SERI L 11 = Sporlan SEH 175 12 = Sporlan SEH 400 13 = Sporlan EDEV B/C (unipolar) 15 = Sporlan reserved 16 = Sporlan reserved 16 = Sporlan SER 1.5 to 20 18 = Sporlan SEH 30 19 = Sporlan SEH 30 19 = Sporlan SEH 30 19 = Sporlan SEH 30 20 = Sporlan SEH 00 21 = Sporlan SEH 00 21 = Sporlan SEI 0.5 to 11 22 = Alco EXM/EXL-246 23 = Alco EX7 25 = Alco EX8 26 = Danfoss ETS 12.5-25-50 27 = Danfoss ETS 100-250 28 = Danfoss ETS 400
EV2	0	0	1	Hz	Frequenza di rete 0= 50 1= 60
EV3	0	0	1		Modo funzionamento 0= SH algo 1= Manuale
EV4	0	0	100	%	Posizione manuale
EV5	0	0	1		Richiesta risincronizzazione 0= No 1= Si
EV6	6,0	3,0	25,0	К	Set-point SH
EV7	3,0	1,0	3,0	К	Set-point LoSH
EV8	15,0	10,0	40,0	К	Set-point HiSH
EV9	-3,0	-40,0	40,0	К	Set-point LOP
EV10	12,0	-40,0	40,0	К	Set-point MOP

EV11	40,0	1,0	100,0	к	PID – banda proporzionale
EV12	120	0	999	sec	PID – tempo integrale
EV13	30	0	999	sec	PID – tempo derivativo
EV14	5	1	255	sec	Tempo stabilizzazione
EV15	100	0	100	%	Posizione stabilizzazione
EV16	30	0	255	sec	Tempo di start-up
EV17	50	0	100	%	Posizione start-up
EV18	1	0	1		Tipo sensore pressione evaporazine 0= 420mA 1= 0-5V
EV19	0,0	-1,0	870,0	bar	Minimo pressione evaporazione
EV20	17,3	-1,0	870,0	bar	Massimo pressione evaporazione
EV21	0,0	-5,0	5,0	bar	Offset pressione evaporazione
EV22	1	0	1		Tipo sensore pressione condensazione 0= 420mA 1= 0-5V
EV23	0,0	-1,0	870,0	bar	Minimo pressione condensazione
EV24	45,0	-1,0	870,0	bar	Massimo pressione condensazione
EV25	0,0	-5,0	5,0	bar	Offset pressione condensazione
EV26	0,0	-10,0	10,0	°C/°F (1)	Offset temperatura aspirazione
EV27	0,0	-10,0	10,0	°C/°F (1)	Offset Temperatura Scarico
PARAM.	DEFAULT	MIN.	MAX.	U.M.	VALVOLA ESPANSIONE 2
EV29	4	1	28		Tipo valvola 1 = Sporlan SER AA 2 = Sporlan SER A 3 = Sporlan SER B 4 = Sporlan SER C 5 = Sporlan SER D 6 = Sporlan SERI F 7 = Sporlan SERI G 8 = Sporlan SERI J 9 = Sporlan SERI K 10 = Sporlan SERI L

					11– Sporlan SEHI 175
					12= Sporlan SEH 400
					12- Sportan SEX
					14 - Sportan EDEV B/C (unipolar)
					15 = Sportan reserved
					16 Sporlan reserved
					17= Sporlan SER 1.5 to 20
					18= Sporlan SEI 30
					19= Sporlan SEI 50
					20= Sporlan SEH 100
					21= Sporlan SEI 0.5 to 11
					22= Alco EXM/EXL-246
					23= Alco EX4 TO 6
					24= Alco EX7
					25= Alco EX8
					26= Danfoss ETS 12.5-25-50
					27= Danfoss ETS 100-250
					28= Danfoss ETS 400
					Froquenza di roto
F\/30	0	0	1	Hz	
LVJU	0	0	I	112	1- 60
					Mada funzianamanta
F\/31	0	0	1		
LVST	Ū	Ū			
FV32	0	0	100	%	Posizione manuale
	-	-			
					Richiesta risincronizzazione
EV33	0	0	1		0= No
					1= Sì
EV34	6,0	3,0	25,0	к	Set-point SH
EV35	3,0	1,0	3,0	к	Set-point LoSH
EV36	15,0	10,0	40,0	К	Set-point HISH
EV37	-3,0	-40,0	40,0	К	Set-point LOP
EV38	12,0	-40,0	40,0	К	Set-point MOP
EV39	40,0	1,0	100,0	К	PID – banda proporzionale
	100				
EV40	120	0	999	sec	PrD – tempo integrale
F\//1	30	0	990	SAC	PID – tempo derivativo
LV41	30	0	777	360	
EV42	5	1	255	sec	Tempo stabilizzazione
EV43	100	0	100	%	Posizione stabilizzazione

EV44	30	0	255	sec	Tempo di start-up
EV45	50	0	100	%	Posizione start-up
EV46	1	0	1		Tipo sensore pressione evaporazine 0= 420mA 1= 0-5V
EV47	0,0	-1,0	870,0	bar	Minimo pressione evaporazione
EV48	17,3	-1,0	870,0	bar	Massimo pressione evaporazione
EV49	0,0	-5,0	5,0	bar	Offset pressione evaporazione
EV50	1	0	1		Tipo sensore pressione condensazione 0= 420mA 1= 0-5V
EV51	0,0	-1,0	870,0	bar	Minimo pressione condensazione
EV52	45,0	-1,0	870,0	bar	Massimo pressione condensazione
EV53	0,0	-5,0	5,0	bar	Offset pressione condensazione
EV54	0,0	-10,0	10,0	°C/°F (1)	Offset temperatura aspirazione
EV55	0,0	-10,0	10,0	°C/°F (1)	Offset Temperatura Scarico
PARAM.	DEFAULT	MIN.	MAX.	U.M.	CONFIGURAZIONE DE-SURRISCALDAMENTO
SH1	2	0	2		Abilitazione SH modulante 0= No 1= Solo sicurezza 2= Si
SH2	5,0	1,0	25,0	К	Set minimo SH
SH3	12,0	3,0	25,0	К	Set massimo SH
SH4	20,0	0,0	50,0	К	Soglia minima DSH
SH5	30,0	0,0	50,0	К	Soglia massima DSH
SH6	4,0	0,0	50,0	К	Zona morta per soglia minima DSH
SH7	4,0	0,0	50,0	К	Zona morta per soglia massima
SH8	60	1	9999	sec	Ritardo variazione SH

SH9	0,2	0,1	2,0	К	Variazione negativa SH
SH10	1,0	0,1	2,0	К	Variazione positiva SH
PARAM.	DEFAULT	MIN.	MAX.	U.M.	PASSWORD
APW	3	0	9999		Password Avanzato
PARAM.	DEFAULT	MIN.	MAX.	U.M.	STORICO ALLARMI
CSA	0	0	1		Cancellazione storico allarmi 0= No 1= Sì

Note:

(1) I'unità di misura della temperatura dipende dal parametro MU1 (°C= 0; °F= 1)

13 GESTIONE DEGLI ALLARMI DELL'UNITÀ

13.1 Segnalazione, verifica e rimozione delle condizioni di allarme

13.1.1 Segnalazione presenza allarmi

La presenza di uno o più allarmi attivi viene segnalata da:

- Attivazione del cicalino (Buzzer) incorporato nel terminale utente.
- Accensione del LED ROSSO sul frontale del terminale utente ();
- Comparsa dell'immagine dello presenza allarmi (Δ) nella pagina principale del programma.
- Nel caso l'allarme sia GRAVE, e quindi bloccante il funzionamento dell'unità, il LED VERDE (0) inizierà a lampeggiare.

13.1.2 Verifica della condizione d'allarme

Premendo a lungo il tasto **ALARM** () verrà visualizzato sul terminale utente il messaggio corrispondente all'allarme attivo. Il Buzzer sarà disattivato.

Premendo il tasto ENTER (🕑) è possibile scorrere tutte le segnalazioni d'allarme attive.

Premendo il tasto ESC (🔤) si ritornerà a visualizzare la pagina principale del programma.

13.1.3 Rimozione di una condizione d'allarme

1

Durante la visualizzazione di un allarme, premendo il tasto **ENTER** () per alcuni secondi, si potrà rimuovere l'allarme visualizzato. Non è possibile rimuovere gli allarmi le cui cause non siano state ripristinate

14 DESCRIZIONE DEGLI ALLARMI DELL'UNITÀ

La seguente tabella illustra il significato dei codici di allarme del dispositivo.

CODICE	ALLARMI C	HE SPENGONO LA MACCHINA						
	Allarme fl	usso						
	Causa:							
	-	flusso acqua insufficiente (il flussostato non si attiva)						
	Ritardo:							
	-	Alla partenza: Secondo parametro - In funzionamento: Secondo parametro						
AL7	Effetto:							
	-	L'intervento provoca lo spegnimento dell'unità. Tutti i dispositivi verranno fermati senza rispettare le						
		tempistiche di funzionamento						
	Soluzioni:							
	-	Verificare l'impianto idraulico						
	Ripristino:							
	-	allarme andrà ripristinato manualmente						
	Allarme st	tato serrande						
	Causa:							
	-	Le serrande motorizzate dell'unità risultano chiuse						
	Ritardo:	Alle pertenze: Cesende perspectre In funzionemente: E e						
	-	Alla partenza: Secondo parametro - In funzionamento: 5 s						
	Elletto.	L'intervente proveca la spegnimente dell'unità. Tutti i dispesitivi versanne formati sonza rispettare la						
AL9		tempistiche di funzionamento						
	Soluzioni							
	-	Verificare il motore della serranda						
	_	Verificare il collegamento elettrico del motore della serranda						
	-	Verificare lo stato della serranda						
	Ripristino:							
	-	L'allarme andrà ripristinato manualmente						

	Allarme generale ventilatore di mandata		
	Causa:		
	-	I ventilatori dell'unità sono bloccati a causa dell'intervento del sensore di flusso d'aria o della protezione	
		elettrica del ventilatore	
	Ritardo:		
	-	Alla partenza: 40 s - In funzionamento: 5 s	
	Effetto:		
AL 40	-	L'intervento provoca lo spegnimento dell'unità	
AL40	-	Tutti i dispositivi verranno fermati senza rispettare le tempistiche di funzionamento	
	Soluzioni:		
	-	Verificare eventuali problemi del circuito aeraulico che possono ridurre la portata aria dell'unità	
	-	Verificare il collegamento elettrico del sensore di flusso aria e della protezione elettrica del ventilatore	
	-	Verificare la velocità del ventilatore	
	-	Verificare lo stato del ventilatore	
	Ripristino:		
	-	L'allarme andrà ripristinato manualmente	
	Allarme in	overter ventilatore 110 (solo se comandati via MODBUS)	
	Causa:		
	-	Mancanza di comunicazione	
	-	Allarme mancanza fasi/alimentazione	
	-	Alta temperatura modulo di regolazione	
	-	Malfunzionamento modulo di regolazione	
	-	Motore sovraccarico	
AL23	-	Bassa alimentazione DC	
AL24	-	Mancanza comunicazione master-slave	
AL25	-	Errore sensore Hall	
AL26	-	Alta temperatura motore	
AL27	Ritardo:		
AL44	-	Alla partenza: 30 s - In funzionamento: 30 s	
AL45	Effetto:		
AL46	-	L'intervento provoca lo spegnimento dell'unità	
AL47	-	Tutti i dispositivi verranno fermati senza rispettare le tempistiche di funzionamento	
AL48	Soluzioni:		
	-	Verificare il cablaggio del cavo di comunicazione MODBUS	
	-	Verificare il collegamento elettrico del ventilatore	
	-	Verificare la tensione di alimentazione della linea elettrica	
	-	Verificare il modulo di regolazione del ventilatore	
	-	Verificare lo stato del ventilatore	
	Ripristino:		
	-	L'allarme andrà ripristinato manualmente	
	Allarme p	resenza fumo/fuoco	
	Causa:		
	-	L'ingresso digitale di allarme fumo/fuoco risulta aperto	
	Ritardo:	Alle pertenze: 10. In funzionemente: E e	
	-	Alla partenza: 10 - In lunzionamento: 5 S	
AL 41	Effetto:	L'intervente provene le apagnimente dell'unità	
AL4 I	-	L'intervento provoca lo spegnimento dell'unita	
	Soluzioni		
		Verificare l'eventuale presenza di fumo o fuoco all'interno del locale	
	Rinristino		
		Secondo parametro	
	-		

CODICE	ALLARMI S	ONDE
AL1 AL2 AL3 AL4 AL5	Per ciascun Allarme so Allarme so Allarme so Allarme so Causa: - Ritardo: - Effetto: - Soluzioni: - Ripristino: -	a delle sonde/sensori configurati, è previsto un allarme specifico: onda umidità ripresa rotta onda temperatura ripresa rotta ensore pressione differenziale aria rotto onda temperatura mandata rotta onda temperatura acqua IN/Free cooling rotta La sonda o il sensore risultano rotti o sconnessi Alla partenza: 10 s - In funzionamento: 10 s Vedi capitoli precedenti Verificare il collegamento elettrico della sonda/sensore Verificare il segnale della sonda/sensore
CODICE	ALLARMI C	OMPRESSORI
AL11 AL12	Allarme pr Causa: - Ritardo: - Effetto: - Soluzioni: - Ripristino: -	rotezione magnetotermica compressore 1/2 La protezione magnetotermica del compressore è andata in allarme Alla partenza: 10 s - In funzionamento: 5 s Vedi capitoli precedenti Verificare il collegamento elettrico del compressore Verificare la corrente assorbita dal compressore L'allarme andrà ripristinato manualmente
AL13 AL14	Allarme al Causa: - Ritardo: - Effetto: - Soluzioni: - - - Ripristino:	ta pressione compressore 1/2 La protezione di alta pressione del compressore è andata in allarme Alla partenza: 10 s - In funzionamento: 5 s Vedi capitoli precedenti Verificare la pressione di condensazione Verificare lo stato del condensatore Verificare la linea di alimentazione del condensatore

	Allarme bassa pressione compressore 1/2	
	Causa:	
	-	La protezione di bassa pressione del compressore è andata in allarme
	Ritardo:	
	-	Alla partenza: Secondo parametro - In funzionamento: 5 s
	Effetto:	
AL15	-	Vedi capitoli precedenti
AL16	Soluzioni:	
	-	Verificare la pressione di evaporazione
	-	Verificare lo stato della valvola di espansione elettronica
	-	Verificare il circuito frigorifero
	Ripristino:	
	-	L'allarme andrà ripristinato manualmente
	Allarme a	Ita temperatura di scarico compressore 1/2
	Causa:	
	-	La protezione alta temperatura di scarico del compressore è andata in allarme
	Ritardo:	
	-	Alla partenza: Secondo parametro - In funzionamento: Secondo parametro
AL 17	Effetto:	
AL17	-	Vedi capitoli precedenti
ALIO	Soluzioni:	
	-	Verificare la temperatura di scarico del compressore
	-	Verificare la pressione evaporazione
	-	Verificare il circuito frigorifero
	Ripristino:	
	-	L'allarme andrà ripristinato manualmente
	Allarme b	assa compressione compressore 1/2
	Causa:	
	-	Il rapporto di compressione del compressore è troppo basso
	Ritardo:	
	-	Alla partenza: Secondo parametro - In funzionamento: 5 s
AI 21	Effetto:	
ΔI 22	-	Vedi capitoli precedenti
//LLL	Soluzioni:	
	-	Verificare il senso di rotazione del compressore
	-	Verificare la pressione evaporazione
	-	Verificare il circuito frigorifero
	Ripristino:	
	-	L'allarme andrà ripristinato manualmente
	Allarme v	alvola di espansione elettronica compressore 1/2
	Causa:	
	II driver ha	a uno dei seguenti problemi:
	-	Mancanza di comunicazione
	-	Allarme sonda pressione di evaporazione
AL19	-	Allarme sonda pressione di condensazione
AL20	-	Allarme sonda temperatura di aspirazione
	- Dit	Allarme sonda temperatura di scarico
	Ritardo:	Alle partenza: 20 a la funzionemente: 20 -
	-	Alia partenza: 30 S - In iunzionamento: 30 S
	Enetto:	Vadi capitali precodenti
	-	vedi capitoli precedenti
	SUIUZIONI:	Varificare il collegamente del driver velvela
	-	

	- Verificare il collegamento delle sonde	
	-	Verificare il segnale delle sonde
	Ripristino:	
	-	L'allarme andrà ripristinato manualmente
CODICE	ALLARMI C	OMPONENTI
	Allarme se	ensore presenza acqua / Pompa di scarico condensa
	Causa:	
	-	Il sistema di rilevazione presenza acqua è in allarme
AL6	-	La pompa scarico condensa è in allarme
	Ritardo:	
	-	Alla partenza: 10 s - In funzionamento: 5 s
	Effetto:	
	-	Secondo parametro
	Soluzioni:	
	-	Verificare il collegamento della sonda di rilevamento acqua
	-	Verificare la presenza di acqua sulla sonda di rilevamento acqua
	-	Verificare il collegamento della pompa di scarico condensa
	-	Verificare lo stato della pompa di scarico condensa
	Ripristino:	
	-	L'allarme andrà ripristinato manualmente
	Allarme te	ermostato di sicurezza batteria elettrica
	Causa:	
	-	La datteria elettrica si e surriscaldata
	Ritardo:	Alle portenza, 10 a In funzionemento, E a
	-	Alla partenza: To S - Th funzionamento: 5 S
ΛΙΟ	Elletto.	La battoria olattrica vorrà arrostata
ALO	- Soluzioni:	
	-	Verificare la velocità dei ventilatori
	_	Verificare la portata aria dei ventilatori
	_	
	Rinristino [.]	
	-	l 'allarme andrà ripristinato manualmente
	Allarme fi	Itro aria intasato
	Causa:	
	_	Il sensore di pressione differenziale del filtro sporco a rilevato una pressione eccessiva
	Ritardo:	······································
	-	Alla partenza: 10 s - In funzionamento: 5 s
	Effetto:	
	-	Sola segnalazione
AL10	Soluzioni:	
	-	Verificare lo stato dei filtri aria
	-	Verificare la taratura del sensore di pressione
	-	Verificare il collegamento del sensore di pressione
	-	Verificare il circuito aeraulico
	Ripristino:	
	-	L'allarme andrà ripristinato manualmente
	•	

	Allarme generale dry cooler			
	Causa:			
	-	Il dry cooler presenta un allarme		
	Ritardo [.]			
	-	Alla partenza: 10 s In funzionamento: 5 s		
AL 25	Effotto			
ALSS	Lifetto.			
	-	ved capiton precedenti		
	Soluzioni:			
	-	Verificare lo stato del dry cooler		
	Ripristino:			
	-	L'allarme andrà ripristinato manualmente		
	Allarme ge	enerale umidificatore		
	Causa:			
	-	L'umidificatore presenta un allarme		
	Ritardo:			
	-	Alla partenza: 10 s - In funzionamento: 5 s		
AL36	Effetto:			
	-	L'umidificazione verrà arrestata		
	Soluzioni:			
	-	Verificare lo stato dell'umidificatore		
	Ripristino:			
	-	L'allarme andrà ripristinato manualmente		
	Allarme g	enerale pompa acqua		
	Causa:			
	_	la pompa acqua presenta un allarme		
	Ritardo:			
	Ritardo.	Alla partonza: 10 s. In funzionamonto: 5 s		
AL 27	Effotto			
AL37	Elletto.			
	-	ved capiton precedenti		
	Soluzioni:			
	-	verificare lo stato della pompa acqua		
	RIPHSUND:	L'allarma andrà ripristinata manualmente		
	- Allarmo d			
	Causa.	Il condensatore esterne presente un ellerme		
	- Ditordo			
	RITATOO:			
AL38	-	Alla partenza: TO S - In funzionamento: 5 S		
AL39	Effetto:			
	-	Vedi capitoli precedenti		
	Soluzioni:			
	-	Verificare lo stato del condensatore esterno		
	Ripristino:			
	-	L'allarme andrà ripristinato manualmente		
	Allarme ge	enerale moto-condensante		
	Causa:			
	-	La moto-condensante esterna presenta un allarme		
	Ritardo:			
AL42	-	Alla partenza: 10 s - In funzionamento: 5 s		
AL42	- Effetto:	Alla partenza: 10 s - In funzionamento: 5 s		
AL42	- Effetto: -	Alla partenza: 10 s - In funzionamento: 5 s Vedi capitoli precedenti		
AL42	- Effetto: - Soluzioni:	Alla partenza: 10 s - In funzionamento: 5 s Vedi capitoli precedenti		
AL42	- Effetto: - Soluzioni: -	Alla partenza: 10 s - In funzionamento: 5 s Vedi capitoli precedenti Verificare lo stato della moto-condensante esterna		
AL42	- Effetto: - Soluzioni: - Ripristino:	Alla partenza: 10 s - In funzionamento: 5 s Vedi capitoli precedenti Verificare lo stato della moto-condensante esterna		

	Allarme mancanza di alimentazione		
	Causa:		
	-	L'unità ha subito un'interruzione dell'alimentazione elettrica	
	Ritardo:		
	-	Alla partenza: 5 s - In funzionamento: 5 s	
AL43	Effetto:		
	-	Vedi capitoli precedenti	
	Soluzioni:		
	-	Verificare lo stato della linea di alimentazione elettrica dell'unità	
	Ripristino:		
	-	L'allarme andrà ripristinato manualmente	
CODICE	ALLARMI R	ETE LOCALE	
	Causa:		
	-	l 'unità non rileva altre unità in rete locale	
	Ritardo [.]		
	-	Alla partenza: 30 s - In funzionamento: 30 s	
	Effetto:		
AL28	_	Vedi capitoli precedenti	
	Soluzioni:		
	-	Verificare la connessione della rete locale	
	-	Verificare la configurazione dei parametri della rete locale	
	Ripristino:		
	-	L'allarme si ripristinerà automaticamente	
CODICE	ALLARMI TEMPERATURE E UMIDITÀ		
	Causa:	ita temperatura di regolazione	
	-	la temperatura regolata ha superato la soglia di allarme	
	Ritardo [.]		
	-	Alla partenza: Secondo parametro - In funzionamento: Secondo parametro	
AL29	Effetto:		
	-	Sola segnalazione	
	Soluzioni:		
	-	Verificare lo stato di funzionamento dell'unità	
	Ripristino:		
	-	L'allarme si ripristinerà automaticamente	
	Allarme ba	assa temperatura di regolazione	
	Causa:		
	-	La temperatura regolata ha superato la soglia di allarme	
	Ritardo:		
	-	Alla partenza: Secondo parametro - In funzionamento: Secondo parametro	
AL30	Effetto:		
	-	Sola segnalazione	
	Soluzioni:		
	- Dissisting	Verificare lo stato di funzionamento dell'unita	
	RIPHSUND:	L'allarma si ripristiparà automaticamente	
	Allarme al	La unidità	
	Causa:		
	-	L'umidità ha superato la soglia di allarme	
AL31	Ritardo:		
	-	Alla partenza: Secondo parametro - In funzionamento: Secondo parametro	
	Effetto:		
		Sola segnalazione	
	-		

	Soluzioni	
	-	Varificara la stata di funzionamento dell'unità
	Dissisting	
	Ripristino:	
	-	L'allarme si ripristinerà automaticamente
	Allarme ba	assa umidità
	Causa:	
	-	L'umidità ha superato la soglia di allarme
	Ritardo:	
	-	Alla partenza: Secondo parametro - In funzionamento: Secondo parametro
AL32	Effetto:	
	-	Sola segnalazione
	Soluzioni:	
	-	Verificare lo stato di funzionamento dell'unità
	Ripristino:	
	-	l 'allarme si rinristinerà automaticamente
	Allarmo al	
	Causa.	
	-	La temperatura limite na superato la soglia di allarme
	Ritardo:	
	-	Alla partenza: Secondo parametro - In funzionamento: Secondo parametro
AL33	Effetto:	
	-	Secondo parametro (Vedi capitoli precedenti)
	Soluzioni:	
	-	Verificare lo stato di funzionamento dell'unità
	Ripristino:	
	-	L'allarme si ripristinerà automaticamente
	Allarme ba	assa temperatura limite
	Causa:	
	_	La temperatura limite ha superato la soglia di allarme
	Pitardo:	
	Ritardo.	Alla partonza: Secondo parametro . In funzionamento: Secondo parametro
AL 24	-	Alla partenza. Secondo parametro - initulizionamento. Secondo parametro
AL34	Elletto:	
	-	Secondo parametro (vedi capitoli precedenti)
	Soluzioni:	
	-	Verificare lo stato di funzionamento dell'unità
	Ripristino:	
	-	L'allarme si ripristinerà automaticamente

15 SUPERVISIONE TRAMITE PROTOCOLLO MODBUS RTU SLAVE

I *c-pro 3* NODE kilo CLOSE possono essere inseriti in una rete di supervisione e/o BMS (Building Management System) che adotta lo standard MODBUS® RTU mediante una scheda seriale RS485.

Il protocollo di comunicazione seriale utilizzato ha le seguenti caratteristiche:

CARATTERISTICHE PROTOCOLLO COMUNICAZIONE SERIALE		
Protocollo	MODBUS® Slave, Modalità RTU	
Std. Di comunicazione	RS485	
Baud Rate	Variabile da 1200 a 38400 Baud	
Word Length	8	
Parity	Even	
Stop Bits	1	

16 RICERCA ED ELIMINAZIONE GUASTI

16.1 L'unità non si avvia

Verificare:

- La presenza tensione di rete.
- La presenza di 24 Vac a valle del trasformatore di tensione d'alimentazione.
- Il corretto inserimento del connettore d'alimentazione a 24 Vac.
- L' integrità del fusibile di protezione.
- Il corretto collegamento del cavo di connessione tra terminale e scheda base.

16.2 Letture errate dei segnali in ingresso

Verificare:

- L'eventuale taratura degli ingressi (da programma).
- La corretta alimentazione delle sonde.
- La corretta connessione delle sonde come da schema elettrico.
- Il corretto segnale in uscita dalle sonde.
- Che i cavi delle sonde siano posti a sufficiente distanza da possibili fonti di disturbo elettromagnetico (cavi di potenza, contattori, cavi con alte tensioni e con dispositivi collegati ad alto assorbimento allo spunto).
- Che tra sensore ed eventuale pozzetto sonda non vi sia un'alta resistenza termica. Eventualmente inserire nei pozzetti pasta o olio conduttivo per garantire una buona trasmissione della temperatura.

16.3 Dubbia segnalazione di allarme da ingresso digitale

Verificare:

- La presenza dell'alimentazione a 24 Vac sul contatto di allarme.
- Che il morsetto sia regolarmente inserito nella sua sede.
- Che non vi siano interruzioni a monte del morsetto.

16.4 Mancata chiusura di un'uscita digitale

Verificare:

- La presenza dell'alimentazione a 24 Vac sul contatto digitale.
- Che il morsetto sia regolarmente inserito nella sua sede.
- Che non vi siano interruzioni a valle del morsetto.

16.5 Assenza delle uscite analogiche

Verificare:

- La presenza del segnale 0-10 V cc dell'uscita analogica.
- Che il morsetto sia regolarmente inserito nella sua sede.
- Che non vi siano interruzioni a valle del morsetto.

16.6 II *c-pro 3* NODE kilo CLOSE attiva la funzione di watch-dog

Verificare:

- Che i cavi di potenza non passino nelle vicinanze dei microprocessori della scheda base.
- Che non vi siano fonti di disturbi elettromagnetici nelle vicinanze del microprocessore o dei cavi di trasmissione dati.

16.7 La connessione seriale con supervisore/BMS non funziona

Verificare:

- La corretta impostazione dell'indirizzo seriale dell'unità.
- La corretta impostazione del baud rate (velocità di comunicazione) dell'unità.
- La tipologia dei cavi seriali utilizzati.
- La corretta connessione dei cavi seriali in base allo schema elettrico.
- Che i cavi di potenza non passino nelle vicinanze dei microprocessori della scheda base.
- Che non vi siano fonti di disturbi elettromagnetici nelle vicinanze del microprocessore o dei cavi di trasmissione dati.

16.8 La connessione in rete locale non funziona

Verificare:

.

- La corretta impostazione dell'indirizzo seriale dell'unità.
- La corretta impostazione del baud rate (velocità di comunicazione) dell'unità.
- La tipologia dei cavi seriali utilizzati.
- Che i cavi di potenza non passino nelle vicinanze dei microprocessori della scheda base.
- Che non vi siano fonti di disturbi elettromagnetici nelle vicinanze del microprocessore o dei cavi di trasmissione dati.

16.9 La connessione MODBUS master non funziona

Verificare:

- La corretta connessione dei cavi seriali in base allo schema elettrico.
- Che i cavi di potenza non passino nelle vicinanze dei microprocessori della scheda base.
- Che non vi siano fonti di disturbi elettromagnetici nelle vicinanze del microprocessore o dei cavi di trasmissione dati.

17 ACCESSORI

17.1 Interfaccia seriale RS-485/USB EVIF20SUXI

17.1.1 Cenni preliminari

Attraverso l'interfaccia è possibile collegare il controllore principale (*c-pro 3 NODE kilo CLOSE*) e il driver per valvole di espansione elettroniche di tipo stepper bipolare (EVDRIVE03) al sistema software di set-up Parameters Manager.

17.2 Chiave USB da 4 GB EVUSB4096M

17.2.1 Cenni preliminari

Attraverso la chiave è possibile eseguire l'upload e il download dei parametri di configurazione del controllore principale (*c-pro 3 NODE kilo CLOSE*).

17.3 Chiave di programmazione EVKEY10

17.3.1 Cenni preliminari

Attraverso la chiave è possibile eseguire l'upload e il download dei parametri di configurazione del driver per valvole di espansione elettroniche di tipo stepper bipolare (EVDRIVE03).

17.4 Modulo di backup

17.4.1 Cenni preliminari

Attraverso il modulo è possibile chiudere la valvola in caso di mancanza di alimentazione del driver per valvole di espansione elettroniche di tipo stepper bipolare (EVDRIVE03).

17.5 Kit di collegamento CJAV35

17.5.1 Cenni preliminari

Attraverso i kit è possibile cablare il controllore principale (*c-pro 3 NODE kilo CLOSE*).

17.6 Kit di collegamento CJAV23

17.6.1 Cenni preliminari

Attraverso il kit è possibile cablare il driver per valvole di espansione elettroniche di tipo stepper bipolare (EVDRIVEO3).

17.7 Kit di collegamento CJAV25

17.7.1 Cenni preliminari

Attraverso il kit è possibile cablare il modulo di backup (EPS4B).

c-pro 3 NODE kilo CLOSE Soluzione di controllo per unità close control Manuale applicativo ver. 2.0a PT - 51/19 Codice 144CP3NKCI204

Questo documento è di esclusiva proprietà EVCO; EVCO non si assume alcuna responsabilità in merito ai possibili errori riportati.

Il cliente (costruttore, installatore o utente finale) si assume ogni responsabilità in merito alla configurazione del dispositivo.

EVCO non può essere ritenuta responsabile per danni causati dall'inosservanza delle avvertenze.

EVCO si riserva il diritto di apportare qualsiasi modifica, senza pregiudicare le caratteristiche essenziali di funzionalità e di sicurezza.

EVCO S.p.A. Via Feltre 81, 32036 Sedico Belluno ITALIA Tel. 0437/8422 | Fax 0437/83648 info@evco.it | www.evco.it