



1 PREPARATIONS

1.1 How to install the instrument

On DIN rail (it is not supplied by the builder).

DIN rail installation (it is not supplied by the builder).

 is
 is
 is
 is

 is

ľa,

2 OPERATION

2.1 Preliminary information

During the normal operation the instrument shows the cabinet temperature.

2.2 How to silence the buzzer

If you have to silence the buzzer:

• press (V)

2.3 How to activate the defrost by hand

If you have to activate the defrost by hand:

Unless the evaporator temperature is below the defrost end tem-

perature you have set with the parameter d2, the defrost will

not be activated.

3 WORKING SETPOINT

3.1 How to set the working setpoint

If you have to modify the working setpoint value:

• press (1) and (\land) or (\lor)

ry Control S.r.l. • EC 6-190 • Sheet 1/2

(1)	you can set the working	setpoint between	the limits you	have set with th	ie param-
-----	-------------------------	------------------	----------------	------------------	-----------

6 ALARMS

REMEDIES

switch off the power

supply of the instru-

ment: unless the alarm

have to change the

instrument

eter /0

the probe

test the integrity of

• test the instrument-

probe connection

test the temperature

has to be between the limits allowed by

the working range)

test the integrity of

probe connection

test the temperature

close to the probe (it

has to be between

the limits allowed by

the working range)

of the instrument

eter /0

the probe • test the instrumentEFFECTS

• you can not gain

access the setting

frost output and

evaporator fan will be forced OFF • the alarm output will be activated

will be activated

the compressor will

be forced to the sta-

tus you have set

with the parameter

ning, it will immedi-

never be activated

will be activatedif the parameter F0

has value 0, the

evaporator fan will

work in accordance

with the compres-

sor, except what

you have set with

the parameters d7,

F4 and F5 • the defrost will end by time (parameter

d3)

ately end • the defrost will

C3

close to the probe (it | • if the defrost is run-

• look at the param- • the alarm output

procedures

disappears, you will | • the compressor, de-

· look at the param- • the alarm output

eters	r1 and r2.		6.1 A	larms
4 (CONFIGURATION PARAM	NETERS	CODE	REASONS
4.1 H	low to set the configura	ation parameters	E 2	there is the corruption
Configu	ration parameters are arrang	ged on two levels.	corrupted	of the configuration
lf you ha	ave to gain access the first le	vel:	memory	data of the memory of
 press 	(A) and (V)	for 4 s A: the instrument will show P R	data	the instrument
lf you h	ave to select a parameter:			
 press 	▲ or ▼			
lf you ha	ave to modify the value of th	e parameter:		
 press 	🛯 and 🔺 or 💌			
lf you ha	ave to gain access the secon	d level:	ΕO	• the kind of cabinet
• gain a	access the first level		cabinet	probe you have con-
 press 	▲ or ▼	for selecting PR	probe	nected is not right
 press 	sur and 🔺 or 💌	for setting " -19 "	alarm	• the cabinet probe
 press 	▲ and ▼	for 4 s 🏹: the instrument		plays up
		will show 🎝 🗂		• the connection in-
lf you ha	ave to quit the procedure:			strument-cabinet
 press 	▲ and ▼	for 4 s 🏹 or do not op-		probe is wrong
		erate for about 60 s.		the cabinet tempera-
5 5	GIGNALS			ture is outside the
5.1 9	Signals			limits allowed by the
LED	MEAN	NING		working range of
*	Compressor LED			the instrument
	if it is lighted, the compressor will b	e ON	E I	 the kind of evapora-
	if it flashes, a compressor delay will	be running (look at the parameters	evapora-	tor probe you have
	C0, C1, C2 and C4)		tor probe	connected is not
***	Defrost LED		alarm	right
	if it is lighted, the defrost output wil	l be activated		• the evaporator
	if it flashes:			probe plays up
	a defrost delay will be running (loc	ok at the parameters C0, C1, C2 and		• the connection in-
	C4)			strument-evaporator
	• the dripping will be running (look	at the parameter d7)		probe is wrong
\$	Evaporator fan LED			• the evaporator tem-
	if it is lighted, the evaporator fan wi	ill be ON		perature is outside
	if it flashes, the after dripping evapo	rator fan delay will be running (look		the limits allowed by
	at the parameter F5)			the working range

F6	0	1	

0

kind of evaporator fan stop temperature (it is important if F0 = 0; 0 = absolute evaporator fan stop temperature, 1 = evaporator fan stop temperature relative to the cabinet temperature)⁽⁵⁾

LABEL	MIN.	MAX.	U.M.	DEF.	serial network (evcobus)
LO	-		—	_	reserved
L1	1	15	—	1	instrument address

(2) the unit of measure depends on the parameter db

(3) unless the evaporator temperature is below the defrost end temperature you have set with the parameter d2, the defrost will not be activated

(4) the instrument restores the normal operation once the dripping ends and the cabinet temperature gets the working setpoint

(5) the evaporator fan stop temperature is "cabinet temperature - F1"; you always have to consider the parameter F1 with positive sign.

cabinet	the cabinet tempera-	test the temperature	the alarm output will
tem-	ture is outside the limit	close to the probe	be activated
perature	you have set with the	(look at the parameters	
lower or	parameter A1 or A2	A0, A1 and A2)	
upper			
tempera-			
ture alarm			

The instrument shows the indications above flashing and the buzzer utters an intermit-

tent beep.

7 TECHNICAL DATA

7.1 Technical data

Box: self-extinguishing grey.

Size: 53 x 90 x 58 mm (2.08 x 3.54 x 2.28 in, 3 DIN modules).

Installation: on DIN rail (it is not supplied by the builder).

Frontal protection: IP 40.

Connections: screw terminal blocks with pitch 5 mm (0.19 in) for cables up to

2.5 mm² (0.38 sq in, power supply, inputs and outputs), 5 poles single line female

connector with pitch 2.5 mm (0.09 in, serial port), 3 poles single line male connector

with pitch 2.5 mm (0.09 in, to remote indicator).

Ambient temperature: from 0 to 55 °C (32 to 131 °F, 10 ... 90% of relative humidity without condensate).

Power supply: 230 Vac, 50/60 Hz, 2 VA (standard model) or 115 Vac, 50/60 Hz, 2 VA

(by request).

Alarm buzzer: included.

Measure inputs: 2 (cabinet and evaporator probe) for PTC or NTC probes.

Working range: from -50 to 99 °C (-58 to 210 °F) for PTC probe, from -40 to 99 °C

(40 to 210 °F) for NTC probe.

Setpoint range: from -55 to 99 °C (-55 to 99 °F).

Resolution: 1 °C.

2

Display: one red LED 3-digit display 13.2 mm (0.51 in) high, compressor, evaporator

fan and defrost output status indicators.

Outputs: 4 relays: one 5 A @ 250 Vac relay for one 1/2 HP @ 230 Vac compressor

control (change-over contact), one 5 A @ 250 Vac relay for evaporator fan control

(NO contact), one 5 A @ 250 Vac relay for defrost system control (NO contact) and one

5 A @ 250 Vac relay for alarms control (the relay will be deactivated during the normal

operation and it will be activated during an alarm condition, change-over contact).

Kind of defrost: electric and hot gas defrost.

Defrost control: defrost interval, defrost end temperature and defrost maximum length

(automatic and by hand).

Serial port: TTL with EVCOBUS communication protocol, adapt for serial interface

EC IFC 02 (for the configurer/cloner system CLONE and supervision system RICS).

8 WORKING SETPOINT AND CONFIGURATION PARAMETERS

8.1	Work	Working setpoint							
LABEL	MIN.	MAX.	U.M.	DEF.	WORKING SETPOINT				
	r1	r2	°C	2	working setpoint				

8.2 First level parameters

LABEL	MIN.	MAX.	U.M.	DEF.	PASSWORD
PA	-55	99	—	0	password

LABEL	MIN.	MAX.	U.M.	DEF.	REGULATOR
r0	1	15	°C	2	hysteresis (differential, it is relative to the working setpoint)

LABEL	MIN.	MAX.	U.M.	DEF.	DEFROST
dA			°C		evaporator temperature showing

8.3 Second level parameters

LABEL	MIN.	MAX.	U.M.	DEF.	MEASURE INPUTS
/0	1	4		1	kind of probe (1 = PTC, 2 = reserved, 3 = NTC, 4 = reserved)
/1	-55	99	°C	0	cabinet and evaporator probes calibration (you have to set eight points for adjusting one
					degree)
/2	0	6		3	probes reading speed (0 = fast,, 6 = slow)
/3	-			_	reserved

LABEL	MIN.	MAX.	U.M.	DEF.	REGULATOR
rO	1	15	°C	2	hysteresis (differential, it is relative to the working setpoint)
r1	-55	r2	°C	-50	minimum value you can assign to the working setpoint
r2	r1	99	°C	50	maximum value you can assign to the working setpoint

LABEL	MIN.	MAX.	U.M.	DEF.	COMPRESSOR PROTECTION
C0	0	15	min	0	minimum delay between you turn the instrument ON and the first compressor activation
C1	0	15	min	5	minimum delay between two compressor activation in succession
C2	0	15	min	3	minimum delay between the compressor gets OFF and the following activation
C3	0	1	_	0	compressor status during the cabinet probe alarm ($0 = it$ will be forced OFF, $1 = it$ will be forced ON)
C4	0	1	_	0	fixed delay since the compressor gets ON and OFF (1 = YES, for 3 s)

LABEL	MIN.	MAX.	U.M.	DEF.	DEFROST
d0	0	99	h/min (2)	8	defrost interval $^{(3)}$ (0 = the defrost will never automatically be activated)
d1	0	1		0	kind of defrost (0 = electric defrost, 1 = hot gas defrost)
d2	-55	99	°C	2	defrost end temperature (evaporator temperature)
d3	1	99	min/s (2)	30	defrost maximum length
d4	0	1		0	defrost activation every time you turn the instrument ON (1 = YES) $^{(3)}$
d5	0	99	min/s ⁽²⁾	0	delay between you turn the instrument ON and the defrost activation (it is important if
					d4 = 1)
d6	0	1		1	freeze of the temperature showed by the instrument during the defrost $(1 = YES)^{(4)}$
d7	0	15	min/s ⁽²⁾	2	dripping time
d8	0	15	h	1	temperature alarm exclusion time since the end of the after dripping evaporator fan delay
					(since the end of F5, it is important if $db = 0$ and A1 and/or A2 $\neq 0$)
d9	0	1		0	compressor protections cleaning at the moment of the defrost activation (it is important if
					d1 = 1; 1 = YES)
dA			°C		evaporator temperature showing
db	0	1	_	0	unit of measure defrost times (0 = d0 in hours, d3, d5, d7 and F5 in minutes,
					1 = d0 in minutes, d3, d5, d7 and F5 in seconds)

LABEL	MIN.	MAX.	U.M.	DEF.	ALARMS
A0	1	15	°C	2	hysteresis (differential, it is relative to A1 and A2, it is important if A1 and/or A2 \neq 0)
A1	-55	0	°C	-10	lower temperature alarm threshold (it is relative to the working setpoint, $0 = it$ will never be
					activated)
A2	0	99	°C	10	upper temperature alarm threshold (it is relative to the working setpoint, $0 = it$ will never be
					activated)
A3	0	15	h	2	temperature alarm exclusion time since you turn the instrument ON (it is important if
					A1 and/or A2 \neq 0)
A4	-				reserved

LABEL	MIN.	MAX.	U.M.	DEF.	EVAPORATOR FAN
FO	0	1		1	evaporator fan action during the normal operation (0 = it will work in accordance with F1
					and F2, 1 = it will be forced ON); look at F3 as well
F1	-55	99	°C	-1	evaporator fan stop temperature (evaporator temperature, it is important if F0 = 0); look at
					F6 as well
F2	2	15	°C	2	hysteresis (differential, it is relative to F1, it is important if $F0 = 0$)
F3	0	1		1	evaporator fan OFF when the compressor is OFF $(1 = YES)$
F4	0	1		1	evaporator fan OFF during the defrost (1 = YES)
F5	0	15	min/s (2)	15	after dripping evaporator fan delay