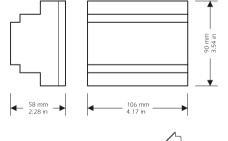
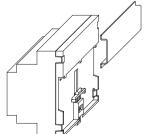
		E	l
		-	ļ
		6-	ı
		()
		f	
		Version 1.0	j
		File ec629	5
		PT	
		EVCO S.r.	ı
		Via Mezzat	e
		Phone 003	3
		info@evco.i	i
	1	PREF	,
	1.1		
		n DIN rail (i	
	Oi		
		Γ	
		-	1
			Į
		4 58 r 2.28	r
		1 2.20	
В			
heet 1.			
20 S101 • Sheet			
20 SIC			


295_{P220 5101} ON-OFF digital controller for ventilated rerigerating units 01 of 15th March 2005 5p220s101_eng_v1.01.pdf erra 6, 32036 Sedico Belluno ITALY 39-0437-852468 • Fax 0039-0437-83648 **ENGLISH**


PARATIONS

to install the instrument

www.evco.it

it is not supplied by the builder).

DIN rail installation (it is not supplied by the builder).

OPERATION

2.1 How to turn the instrument ON/OFF

If you have to turn the instrument ON/OFF:

■ press (♦)

for 2 s

During the normal operation the instrument shows the temperature the auxiliary probe is reading.

2.2 How to silence the buzzer

If you have to silence the buzzer: \mathbf{v}

press

2.3 How to activate the defrost by hand

If you have to activate the defrost by hand:

■ press

Unless the evaporator temperature is below the defrost end temperature you have set with the parameter d2, the defrost will not be activated.

2.4 How to turn the cabinet light ON/OFF

If you have to turn the cabinet light ON/OFF:

press

(※)

2.5 Compressor thermal protection

The activation of this input forces the compressor OFF by hardware and software.

REAL TIME CLOCK 3

How to set the clock

Press

 $\overline{\mathbf{v}}$

for 2 s : the instrument

will show P _ Z

♠ or ▼

for selecting r

If you have to modify the value of the hour:

(%) and (A) or (V)

If you have to modify the value of the minutes:

■ release (¾) and

press it again during the

then ...

press

♠ or ♥

If you have to quit the procedure:

♠ or ▼

as long as the instrument shows the temperature

modification of the hour,

the auxiliary probe is read-

ing or do not operate for

about 30 s.

WORKING SETPOINT

How to set the working setpoint

If you have to modify the working setpoint value:

press

- (1) you can set the working setpoint between the limits you have set with the param eters r1 and r2
- unless the parameter r5 has value 0, you can not modify the working setpoint.

CONFIGURATION PARAMETERS

How to set the configuration parameters

Configuration parameters are arranged on two levels.

If you have to gain access the first level:

If you have to select a parameter:

If you have to modify the value of the parameter:

If you have to gain access the second level:

gain access the first level

press

for selecting P A

press press

(%) and (A) or (V) for setting "-19" for 4 s : the instrument

will show - !

If you have to quit the procedure:

for 4 s or do not operate for about 60 s.

ADDITIONAL FUNCTIONS

How to gain access the additional functions

If you have to gain access the additional functions:

press

for 2 s : the instrument will show P _ Z

If you have to quit the procedure:

as long as the instrument shows the temperature the auxiliary probe is reading or do not operate for about 30 s.

6.2 Evaporator temperature showing

If you have to show the evaporator temperature:

- gain access the additional functions
- press
- (A) or (V)
- for selecting P 7

press

6.3 Cabinet temperature showing

If you have to show the cabinet temperature:

- gain access the additional functions
- press (A) or (V)

for selecting P - 7

press

6.4 Temperature alarm storage

If you have to show the temperature the instrument has stored during the lower temperature alarm:

- gain access the additional functions
 - (A) or (V)

for selecting $A^{(3)}$

press

If you have to show the temperature the instrument has stored during the upper temperature alarm:

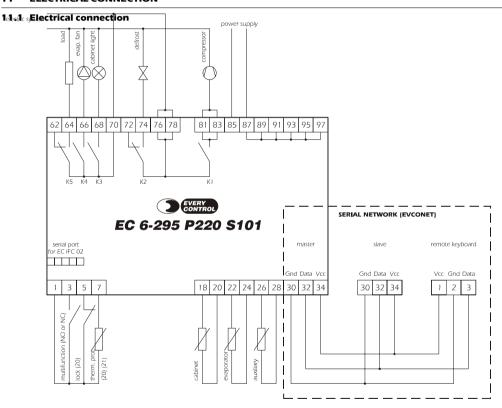
- gain access the additional functions
- press
- ♠ or ♥
- for selecting $H^{(4)}$

- press

If you have to erase the temperature the instrument has stored during the lower or upper temperature alarm:

- gain access the additional functions
- press
- (A) or (V)
- for selecting A! or A Afor 4 s : the instrument

- press
- will show - -
- (3) unless the parameter A8 has value 1 or 3, the label AL will not be showed
- unless the parameter A8 has value 2 or 3, the label AH will not be showed


SIGNALS

7.1 Signals

LED	MEANING			
*	Compressor LED			
	if it is lighted, the compressor will be ON			
	if it flashes, a compressor delay will be running (look at the parameters			
	C0, C1, C2, C4, n1 and n4)			

- (15) when there is 1 min to the end of the time you have set with the parameter, the cabinet light will be turned OFF just for 1 s; press (**) during the time you have set with the parameter to turn the cabinet light ON and to exclude the function, press 🐞 again before the end of the time you have set with the parameter to recover function
 - (if the remaining time of the parameter is higher than 1 min, the time will be forced at 1 min and the cabinet light will be turned OFF just for 1 s)
- (16) do not set more instruments as master
- (17) the time between the master implements a control and the slave implements the same control is "n1 x n4"
- (18) except the control turning ON and OFF; it will immediately be implemented
- [19] if among the remote controls the slave has to implement there is the defrost activation, the parameter d5 will set a time you will have to add to the one you have set with the parameters n1 and n4 (the slave will implement the control even if the conditions will not allow the master of activating the defrost); if the master is in the STAND-BY mode and among the remote controls the slave has to implement there is not the turning ON and OFF, the slave will work with the local settings.

ELECTRICAL CONNECTION

- (20) short-circuit terminals 1 and 5 and/or 1 and 7 if you do not use the lock input and/or the compressor thermal protection
- (21) the position of the probe for compressor thermal protection could compromise the insulation between low voltage and high voltage parts

n4	0	240	S	0	time between the master implements a control and the slave implements the same control	
					(it is important if $n0 = 2$ and $n1 \neq 0$); look at nA as well (17) (18)	
nA	0	15	_	0	remote control the slave has to implement (0 = no controls, 1 and 9 = compressor status,	
					2 and 10 = defrost activation, 3 and 11 = compressor status and defrost activation,	
					4 and 12 = turning ON and OFF, 5 and 13 = compressor status and turning ON and OF	
					6 and 14 = defrost activation and turning ON and OFF, 7 and 15 = compressor status,	
					defrost activation and turning ON and OFF, 8 = reserved) (19)	

LABEL	MIN.	MAX.	U.M.	DEF.	ENERGY SAVING (the working setpoint becomes r8)	
Hr1	0.0	23.5	h.damin (6)	0.0	Energy Saving cycle activation time	
Hr2	0.0	23.5	h.damin (6)	0.0	Energy Saving cycle length	

LABEL	MIN.	MAX.	U.M.	DEF.	REAL TIME DEFROST
Hd1	0.0	23.5	h.damin (6)		first defrost activation time (it is important if $dE = 3$; = it will never be activated) (7)
Hd2	0.0	23.5	h.damin (6)		second defrost activation time (it is important if $dE = 3$;= it will never be activated) (7)
Hd3	0.0	23.5	h.damin (6)		third defrost activation time (it is important if dE = 3; = it will never be activated) (7)
Hd4	0.0	23.5	h.damin (6)		fourth defrost activation time (it is important if dE = 3; = it will never be activated) (7)
Hd5	0.0	23.5	h.damin (6)		fifth defrost activation time (it is important if $dE = 3$;= it will never be activated) (7)
Hd6	0.0	23.5	h.damin (6)		sixth defrost activation time (it is important if dE = 3; = it will never be activated) $^{(7)}$

- the unit of measure depends on the parameter /8
- damin = 10 minutes
- unless the evaporator temperature is below the defrost end temperature you have set with the parameter d2, the defrost will not be activated
- if the time the compressor is ON is lower than 30 s, the compressor will never be ON; if the cabinet probe failure takes place during a compressor delay, the compressor will be forced OFF for 1 min; the parameter C1 sets the minimum delay between the end of the cabinet probe failure and the following activation of the compressor (if the parameter C1 has value 0, the compressor will be forced off for 2 min)
- [9] if at the moment of the defrost activation the cabinet temperature is below the value "working setpoint + r0", the instrument will not show temperatures above that value; if at the moment of the defrost activation the cabinet temperature is above the value "working setpoint + r0", the instrument will not show the increases of the temperature (if the increase takes place below the value "working setpoint + r0", look at the previous case); the instrument restores the normal operation once the after dripping evaporator fan delay ends and the cabinet temperature falls below the freeze temperature
- (10) if at the moment of the defrost activation the compressor is ON since a time lower than the one you have set with the parameter, the compressor will be forced ON for a time such as to finish the time you have set with the parameter
- (11) if the lower temperature alarm takes place during the count of the delay, this last will be cleared
- [12] if the temperature alarm does not disappear at the end of the times you have set with the parameters A3 and AA, it will further be excluded for the time you have set with the parameter A6; if the temperature alarm takes place during the defrost and does not disappear at the end of the time you have set with the parameter A7, it will further be excluded for the time you have set with the parameter A6; if the temperature alarm takes place during the multifunction input activation, it will be excluded for the time "A5 + A6" since the input activation or for the time you have set with the parameter A6 since the input deactivation
- (13) the evaporator fan stop temperature is "cabinet temperature F1"; you always have to consider the parameter F1 with positive sign
- (14) the instrument will automatically verify the maximum value of the parameter; it always has to be lower than the value you have set with the parameter i4

***	Defrost LED						
	if it is lighted, the defrost output will be activated						
	if it flashes:						
	• a defrost delay will be running (look at the parameters C0, C1, C2, C4,						
	n1 and n4)						
	• the dripping will be running (look at the parameter d7)						
	the freezing fluid heating will be running (look at the parameter dP)						
43	Evaporator fan LED						
	if it is lighted, the evaporator fan will be ON						
	if it flashes, the after dripping evaporator fan delay will be running (look						

Cabinet light LED if it is lighted, the cabinet light will be ON if it flashes, the multifunction input will be active (look at the parameters

at the parameter F5)

i0, i1 and i7)

eter nAl

пEЕ

(Ŧ) Lock input/thermal protection LED if it is lighted, there will have been a number of lock input/thermal protection alarms such as to give the lock of the instrument (turn the instrument OFF and turn it ON again, look at the parameters i2, i3, i4 and i5) if it flashes, the lock input/thermal protection will be active (look at the parameters i2, i3, i4 and i5)

ON STAND-BY LED if it is lighted, the instrument will be in the STAND-BY mode if it flashes, the instrument will be set as slave but it will not be authorized to implement the remote controls coming from the master (look at the parameter n3) if it flashes every two seconds, the instrument will be set as slave and among the remote controls, coming from the master, the slave has to implement, there will be the turning ON and OFF (look at the param-

	INDICAT.	MEANING
Sheet 2/3		the instrument will be set as slave and among the remote controls, com-
- She		ing from the master, the slave has to implement, there will be the com-
S10		pressor status (look at the parameter nA).
5 P220		If you have to show the temperature the auxiliary probe is reading,
EC 6-295		press 🔻

the instrument will be set as slave, among the remote controls, coming from the master, the slave has to implement, there will be the compressor status but there will not be the turning ON and OFF, both the master and the slave will be in the STAND-BY mode (look at the parameter nA). If the master is in the STAND-BY mode and the slave is ON, the indication will be showed alternated with the temperature the auxiliary probe

8 **ALARMS**

is reading

8.1 Alarms

CODE	reasons	REMEDIES	EFFECTS
E 2	there is the corruption	switch off the power	• you can not gain
corrupted	of the configuration	supply of the instru-	access the setting
memory	data of the memory of	ment: unless the alarm	procedures
data	the instrument	disappears, you will	■ all outputs will be
		have to change the	forced OFF
		instrument	
P, c	the lock input/thermal	deactivate the inputs	• the compressor will
person	protection and the	(look at the param-	be forced OFF
into the	multifunction input are	eters i0, i1, i2, i3, i4	• if the defrost is run-
cabinet	active	and i5)	ning, it will immedi-
(you can		• turn the instrument	ately end
not		OFF and turn it ON	• the defrost will
silence		again	never be activated
the			• you will get the ac-
buzzer)			tion you have cho-
			sen with the param-
			eter i0
Е∃	the lock input/thermal	deactivate the input	• the compressor will
lock	protection is active.	(look at the param-	be forced OFF
input/	If there has been a	eters i2, i3, i4 and i5)	• if the defrost is run-
thermal	number of lock input/	• turn the instrument	ning, it will immedi-
protection	thermal protection	OFF and turn it ON	ately end
alarm	alarms such as to give	again	• the defrost will
	the lock of the instru-		never be activated
	ment, E 3 for 3 s		
	every 4) (, turn		
	the instrument OFF		

and turn it ON again)

	ľ	I	I
E 0	• the kind of cabinet	• look at the param-	• the compressor will
cabinet	probe you have con-	eter /0	work in accordance
probe	nected is not right	• test the integrity of	with the parameters
alarm	• the cabinet probe	the probe	C5 and C6
	plays up	• test the instrument-	• if the defrost is run-
	• the connection in-	probe connection	ning, it will immedi-
	strument-cabinet		ately end
	probe is wrong		
	the cabinet tempera-	• test the temperature	• the defrost will
	ture is outside the	close to the probe (it	never be activated
	limits allowed by the	has to be between	
	working range of	the limits allowed by	
	the instrument	the working range)	
E I	• the kind of evapora-	• look at the param-	• if the parameter dE
evapora-	tor probe you have	eter /0	has value 2, the in-
tor probe	connected is not	• test the integrity of	strument will work
alarm	right	the probe	as if the parameter
	• the evaporator	• test the instrument-	had value 0
	probe plays up	probe connection	• if the parameter F7
	• the connection in-	• test the temperature	has value 3 or 4, the
	strument-evaporator	close to the probe (it	evaporator fan will
	probe is wrong	has to be between	work in accordance
	• the evaporator tem-	the limits allowed by	with the compres-
	perature is outside	the working range)	sor, except what
	the limits allowed by		you have set with
	the working range		the parameters F4
	of the instrument		and F5
			• the defrost will end
			by time (parameter
			d3)
E 4	• the kind of auxiliary	• look at the param-	no effects
auxiliary	probe you have con-	eter /0	
probe	nected is not right	• test the integrity of	
alarm	• the auxiliary probe	the probe	
	plays up	• test the instrument-	
	• the connection in-	probe connection	
	strument-auxiliary		
	probe is wrong		
	I	I	ı

	I	I	I
	• the auxiliary tem-	• test the temperature	
	perature is outside	close to the probe (it	
	the limits allowed by	has to be between	
	the working range	the limits allowed by	
	of the instrument	the working range)	
Aın	the multifunction input	deactivate the input	you will get the action
multi-	is active.	(look at the parameters	you have chosen with
function	Unless the parameter	i0, i1 and i6)	the parameter i0
input	i6 has value 1, the in-		
alarm	strument will not show		
	any indication		
ЯH	the cabinet tempera-	test the temperature	no effects
upper	ture is outside the limit	close to the probe	
tempera-	you have set with the	(look at the parameters	
ture alarm	parameter A1b	A0, A1b and A2b)	
ЯH	there has been an up-	look at the parameters	no effects
for 3 s	per temperature alarm	A0, A1b, A2b, A8 and	
every 4		A9	
• 15-			
AL	the cabinet tempera-	test the temperature	no effects
lower	ture is outside the limit	close to the probe	
tempera-	you have set with the	(look at the parameters	
ture alarm	parameter A1A	A0, A1A and A2A)	
AL	there has been a lower	look at the parameters	no effects
for 3 s	temperature alarm	A0, A1A, A2A, A8 and	
every 4		A9	
• 15-			
rtc	there is the corruption	set the clock again	• if the parameter dE
real time	of the data of the clock		has value 3, the in-
clock	of the instrument		strument will work
alarm			as if the parameter
			had value 0
			• the Energy Saving
			cycle will never be
			activated
	<u> </u>	1	<u> </u>

F7	0	4	_	1	evaporator fan action during the normal operation (0 = it will be forced OFF, 1 = it will be
					forced ON, 2 = it will work in accordance with the compressor, 3 = it will work in accordance
					with F1 and F2, $4 = if$ the compressor is ON, it will work in accordance with F1 and F2, if the
					compressor is OFF, it will be forced OFF)

LABEL	MIN.	MAX.	U.M.	DEF.	DIGITAL INPUTS
iO	0	7		4	action given by the multifunction input activation (0 = inactive, 1 = once d5 has passed, the
					defrost will be activated (7) , 2 = the cabinet light will be turned ON, 3 = the compressor will be
					forced ON for A5 and the cabinet light will be turned ON, 4 = the compressor and the
					evaporator fan will be forced OFF for A5 and the cabinet light will be turned ON,
					5 = the evaporator fan will be forced OFF for A5 and the cabinet light will be turned ON,
					6 = the working setpoint becomes r8, 7 = the working setpoint becomes r8 and the cabinet
					light will be turned OFF); look at i7 as well
i1	0	1		0	kind of contact of the multifunction input (it is important if i0 \neq 0; 0 = NO, 1 = NC)
i2	1	2	_	1	action given by the lock input/thermal protection activation (1 = the compressor will be forced
					OFF, 2 = in accordance with i3, i4 and i5)
i3	0	15	_	0	lock input/thermal protection alarms number such as to give the lock of the instrument (it is
					important if $i2 = 2$; $0 = $ the lock of the instrument will never take place)
i4	i5	240	min	0	time without lock input/thermal protection alarms able to clear the lock input/thermal pro-
					tection alarms counter (it is important if $i2 = 2$)
i5	0	15 (14)	min	0	minimum delay between the lock input/thermal protection deactivation and the following
					compressor activation (it is important if i2 = 2)
i6	0	1	_	1	indication "Ain" flashing on the display during the multifunction input activation (it is impor-
					tant if i0 \neq 0)
i7	0	240	min	0	delay between the multifunction input deactivation and the cabinet light gets OFF (it is
					important if i0 = 2, 3, 4 or 5) (15)

LABEL	MIN.	MAX.	U.M.	DEF.	serial network (evcobus)
L1	1	15	_	1	instrument address
L2	0	7	_	0	instrument group
L4	0	3	_	1	baud rate (0 = 1,200 baud, 1 = 2,400 baud, 2 = 4,800 baud, 3 = 9,600 baud)

LABEL	MIN.	MAX.	U.M.	DEF.	SERIAL NETWORK (EVCONET)	
n0	0	2	_	0	operation of the instrument in the network $(0 = instrument not enabled to work in the instrument not enabled to work in the$	
					network, 1 = master, 2 = slave) (16)	
n1	0	8	_	0	address of the instrument in the network (it is important if $n0 \neq 0$; $0 = master$ address,	
					1 8 = first eighth slave address)	
n3	0	1	-	0	authorization to implement the remote controls coming from the master (it is important if	
					$n0 = 2$ and $n1 \neq 0$; $1 = YES$)	

dP	0	99	min	0	minimum time the compressor must have been ON at the moment of the defrost activation
					in order that the defrost can be activated (it is important if $d1 = 1$) (10)

LABEL	MIN.	MAX.	U.M.	DEF.	ALARMS
A0	0.1	15.0	°C/°F (5)	2.0	hysteresis (differential, it is relative to A1A and A1b, it is important if A2A and/or A2b \neq 0)
AIA	-99	99.9	°C/°F (5)	-10	lower temperature alarm threshold; look at A2A as well
A2A	0	2	_	1	kind of lower temperature alarm (0 = it will never be activated, 1 = lower temperature alarm
					relative to the working setpoint, 2 = absolute lower temperature alarm)
Alb	-99	99.9	°C/°F (5)	10.0	upper temperature alarm threshold; look at A2b as well
A2b	0	2	_	1	kind of upper temperature alarm (0 = it will never be activated, 1 = upper temperature alarm
					relative to the working setpoint, 2 = absolute upper temperature alarm)
A3	0	240	min	120	upper temperature alarm exclusion time since you turn the instrument ON (it is important if
					A2b ≠ 0) (11)
A5	-1	120	min	30	buzzer exclusion time since the multifunction input activation (it is important if i0 \neq 0;
					-1 = the buzzer will never be activated)
A6	0	240	min	5	temperature alarm exclusion time (it is important if A2A and/or A2b ≠ 0) (12)
A7	0	240	min	15	upper temperature alarm exclusion time since the end of the after dripping evaporator fan
					delay (since the end of F5, it is important if A2b \neq 0) (11)
A8	0	3	_	0	kind of temperature alarm the instrument has to store (it is important if A2A and/or A2b \neq 0;
					0 = it will never be stored, 1 = lower temperature alarm, 2 = upper temperature alarm,
					3 = both the lower temperature alarm and the upper one)
A9	1	15	s	1	time between two records of the temperature alarm in succession (it is important if
					A2A and/or A2b ≠ 0 and A8 ≠ 0)
AA	0	240	min	0	temperature alarms relative to the working setpoint exclusion time since the multifunction
					input activation/deactivation (it is important if i0 = 6 or 7) and since the activation/end of the
					Energy Saving cycle

LABEL	MIN.	MAX.	U.M.	DEF.	EVAPORATOR FAN	
F1	-99	99.9	°C/°F (5)	-1.0	evaporator fan stop temperature (evaporator temperature, it is important if F7 = 3 or 4); loo	
					at F6 as well	
F2	0.1	15.0	°C/°F (5)	2.0	hysteresis (differential, it is relative to F1, it is important if F7 = 3 or 4)	
F4	0	2	_	0	evaporator fan action during the defrost and dripping (0 = it will be forced OFF,	
					1 = it will be forced ON, 2 = it will work in accordance with F7)	
F5	0	15	min	2	after dripping evaporator fan delay	
F6	0	1	_	0	kind of evaporator fan stop temperature (it is important if F7 = 3 or 4; 0 = absolute evapora-	
					tor fan stop temperature, 1 = evaporator fan stop temperature relative to the cabinet tem-	
					perature) (13)	

		i	1
пEЕ	the instrument will be	• if you have to show	look at the effects of
slave	set as slave, among	the alarm code,	that case
alarm	the remote controls,	press 🔻	
	coming from the mas-	• look at the remedies	
	ter, the slave has to	of that case	
	implement there will		
	be the compressor sta-		
	tus and there will be		
	one of the alarms you		
	saw in the previous		
	cases.		
	If the master is in the		
	STAND-BY mode and		
	the slave is ON, the in-		
	dication will be		
	showed every 2 s alter-		
	nated with the alarm		
	code		
пЕЕ	• the value of the pa-	• look at the param-	the instrument will
serial	rameters n0, n1 and	eters n0, n1 and n3	work with the local
network	n3 is wrong	• test the connections	settings
alarm	• the connections of	of the instrument	
	the instrument are		
	wrong		

The instrument shows the indications above alternated with the temperature the auxiliary probe is reading, except the indication "E2" (it flashes), "E0" (it is alternated with the indication "---") and "nEt" (slave alarm, it is a fixed indication) and the buzzer utters an intermittent been

9 TECHNICAL DATA

9.1 Technical data

Box: self-extinguishing grey.

Size: 106 x 90 x 58 mm (4.17 x 3.54 x 2.28 in, 6 DIN modules).

Installation: on DIN rail (it is not supplied by the builder).

Frontal protection: IP 40.

Connections: screw terminal blocks with pitch 5 mm (0.19 in) for cables up to 2.5 mm² (0.38 sq in, power supply, inputs and outputs), 5 poles single line female connector with pitch 2.5 mm (0.09 in, serial port).

Power supply: 230 Vac, 50/60 Hz, 4 VA.

Clock data maintenance without power supply: 24 hours (the instrument must have been ON for 2 min at least).

Alarm buzzer: included.

Measure inputs: 3 (cabinet, evaporator and auxiliary probe) for PTC or NTC probes.

Digital inputs: 2 inputs: one multifunction input (NO or NC contact) and one lock input, without voltage (they work with 5 mA).

Working range: from -50 to 99.9 °C (-58 to 212 °F) for PTC probe, from -40 to 99.9 °C (-40 to 212 °F) for NTC probe.

Setpoint range: from -99 to 99.9 °C (-99 to 99 °F).

 $\textbf{Resolution: 1 °F with unit of measure in Fahrenheit, 0.1 or 1 °C with unit of measure} \\ in Celsius.$

Display: one red LED 3-digit display 13.2 mm (0.51 in) high, output status indicators, instrument mode indicator.

Outputs: 5 relays: one 16 A @ 250 Vac relay for one 1½ HP @ 230 Vac compressor control (NO contact), one 8 A @ 250 Vac relay for evaporator fan control (NO contact), one 8 A @ 250 Vac relay for defrost system control (change-over contact), one 8 A @ 250 Vac relay for defrost system control (change-over contact), one 8 A @ 250 Vac relay for cabinet light control (NO contact) and one 8 A @ 250 Vac relay working in accordance with the instrument mode (the relay will be activated if the instrument is ON and it will be deactivated if the instrument is in the STAND-BY mode, change-over contact).

Kind of defrost: electric and hot gas defrost.

Defrost control: defrost interval, defrost end temperature, defrost maximum length and defrost interval count mode (automatic, by hand and remote).

Serial port: TTL with EVCOBUS communication protocol, adapt for serial interface EC IFC 02.

10 WORKING SETPOINT AND CONFIGURATION PARAMETERS

10.1 Working setpoint

LA	\BEL	MIN.	MAX.	U.M.	DEF.	Working setpoint
		r1	r2	°C/°F (5)	0.0	working setpoint

10.2 First level parameters

LABEL	MIN.	MAX.	U.M.	DEF.	PASSWORD
PA	-55	99	_	0	password

LABEL	MIN.	MAX.	U.M.	DEF.	MEASURE INPUTS
/1A	-10	10.0	°C/°F (5)	0.0	cabinet probe calibration
/1b	-10	10.0	°C/°F (5)	0.0	evaporator probe calibration
/1C	-10	10.0	°C/°F (5)	0.0	auxiliary probe calibration

LABE	MIN.	MAX.	U.M.	DEF.	REGULATOR
r0	0.1	15.0	°C/°F (5)	2.0	hysteresis (differential, it is relative to the working setpoint)

LABEL	MIN.	MAX.	U.M.	DEF.	SERIAL NETWORK (EVCONET)
n3	0	1	_	0	authorization to implement the remote controls coming from the master (it is important if
					$n0 = 2$ and $n1 \neq 0$; $1 = YES$)

LABEL	MIN.	MAX.	U.M.	DEF.	ENERGY SAVING (the working setpoint becomes r8)
Hr1	0.0	23.5	h.damin (6)	0.0	Energy Saving cycle activation time
Hr2	0.0	23.5	h.damin (6)	0.0	Energy Saving cycle length

LABEL	MIN.	MAX.	U.M.	DEF.	REAL TIME DEFROST
Hd1	0.0	23.5	h.damin (6)		first defrost activation time (it is important if $dE = 3$; = it will never be activated) (7)
Hd2	0.0	23.5	h.damin (6)		second defrost activation time (it is important if dE = 3; = it will never be activated) (7)
Hd3	0.0	23.5	h.damin (6)		third defrost activation time (it is important if dE = 3; = it will never be activated) $^{(7)}$
Hd4	0.0	23.5	h.damin (6)		fourth defrost activation time (it is important if dE = 3; = it will never be activated) (7)
Hd5	0.0	23.5	h.damin (6)		fifth defrost activation time (it is important if dE = 3; = it will never be activated) (7)
Hd6	0.0	23.5	h.damin (6)		sixth defrost activation time (it is important if dE = 3; = it will never be activated) (7)

10.3 Second level parameters

LABEL	MIN.	MAX.	U.M.	DEF.	MEASURE INPUTS
/0	1	3	_	1	kind of probe (1 = PTC, 3 = NTC)
/1A	-10	10.0	°C/°F (5)	0.0	cabinet probe calibration
/1b	-10	10.0	°C/°F (5)	0.0	evaporator probe calibration
/1C	-10	10.0	°C/°F (5)	0.0	auxiliary probe calibration

/5	0	1	_	1	temperature resolution (it is important if $/8 = 1$; $0 = 1$ degree, $1 = 0.1$ degrees)
/8	0	1	_	1	temperature unit of measure (0 = Fahrenheit degree, 1 = Celsius degree)

LABEL	MIN.	MAX.	U.M.	DEF.	REGULATOR
r0	0.1	15.0	°C/°F (5)	2.0	hysteresis (differential, it is relative to the working setpoint)
r1	-99	r2	°C/°F (5)	-50	minimum value you can assign to the working setpoint
r2	r1	99.9	°C/°F (5)	50.0	maximum value you can assign to the working setpoint
r5	0	1	_	0	working setpoint modification lock-out (1 = YES)
r8	-99	99.9	°C/°F (5)	0.0	auxiliary working setpoint (it is the working setpoint during the multifunction input activa-
					tion if i0 = 6 or 7 and during the Energy Saving cycle)

LABEL	MIN.	MAX.	U.M.	DEF.	COMPRESSOR PROTECTION
⊂0	0	240	min	0	minimum delay between you turn the instrument ON and the first compressor activation
C1	0	240	min	5	minimum delay between two compressor activation in succession
C2	0	240	min	3	minimum delay between the compressor gets OFF and the following activation
C4	0	1	_	0	fixed delay since the compressor gets ON and OFF (1 = YES, for 3 s)
C5	1	240	min	10	cycle time for the compressor activation during the cabinet probe alarm
C6	0	100	%	50	percentage of C5 the compressor is ON during the cabinet probe failure (8)

LABEL	MIN.	MAX.	U.M.	DEF.	DEFROST
d0	0	99	h	8	defrost interval (it is important if dE \neq 3); look at dE as well (7) (0 = the defrost will never
					automatically be activated)
d1	0	1	_	1	kind of defrost (0 = electric defrost, 1 = hot gas defrost)
d2	-99	99.9	°C/°F (5)	2.0	defrost end temperature (evaporator temperature)
d3	0	99	min	30	defrost maximum length (0 = the defrost will never be activated)
d4	0	1	_	0	defrost activation every time you turn the instrument ON (1 = YES) (7)
d5	0	99	min	0	delay between you turn the instrument ON and the defrost activation (it is important if
					d4 = 1
d6	0	1	_	1	freeze of the cabinet temperature showed by the instrument during the defrost $(1 = YES)^{(9)}$
d7	0	15	min	2	dripping time
d9	0	1	_	0	compressor protections cleaning at the moment of the defrost activation (it is important if
					d1 = 1; 1 = YES)
dE	0	3	_	0	defrost interval count mode; look at d0 as well (0 = the instrument counts the working time,
					1 = the instrument counts the sum of the times the compressor is ON,
					2 = the instrument counts the sum of the times the evaporator temperature is below dF,
					3 = real time defrost, the defrost will be activated at the times you have set with the param-
					eters Hd1 Hd6)
dF	-99	99.9	°C/°F (5)	0.0	defrost interval count freeze threshold (evaporator temperature, it is important if $dE = 2$)