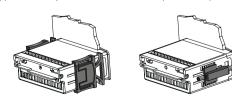
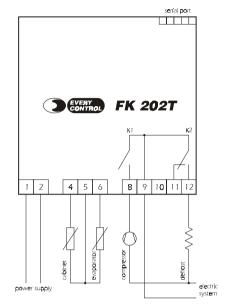


PREPARATIONS


1.1 How to install the instrument

Panel mounting, panel cut out $71 \times 29 \text{ mm}$ (2.79 x 1.14 in), with click brackets (they are supplied by the builder) or screw brackets (by request).

(1) maximum depth with screw terminal blocks (by request)


(2) maximum depth with extractable terminal blocks (standard model).

installation with click brackets (on the left-hand side, they are supplied by the builder)

and screw brackets (on the right-hand side, by request); if you are using screw brackets, you have to moderate the clamping torque, in order not to damage the box and screw brackets.

1.2 Electrical connection

2 OPERATION

press

2.1 Preliminary information

During the normal operation the instrument shows the cabinet temperature.

2.2 How to activate the defrost by hand

If you have to activate the defrost by hand:

Unless the evaporator temperature is below the defrost end temperature you have set with the parameter d2, the defrost will not be activated.

for 4 s

3 WORKING SETPOINT

(**^**

3.1 How to set the working setpoint

If you have to modify the working setpoint value:

press set and \spadesuit or \bullet

(3) you can set the working setpoint between the limits you have set with the parameters r1 and r2.

CONFIGURATION PARAMETERS

4.1 How to set the configuration parameters

Configuration parameters are arranged on two levels.

If you have to gain access the first level:

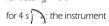
for 4 s : the instrument will show PR

If you have to select a parameter:

If you have to modify the value of the parameter:

If you have to gain access the second level:

■ gain access the first level


press

press press

will show ႕ 🛚

If you have to quit the procedure:

press

for 4 s or do not operate for about 60 s.

SIGNALS

5.1 Signals

LED	MEANING							
*	Compressor LED							
	if it is lighted, the compressor will be ON							
	if it flashes, a compressor delay will be running (look at the parameters							
	C0, C1, C2 and C4)							
*	Defrost LED							
	if it is lighted, the defrost output will be activated							
	if it flashes:							
	• a defrost delay will be running (look at the parameters C0, C1, C2 and							
	C4)							
	• the dripping will be running (look at the parameter d7)							

ALARMS 6

6.1 Alarms

CODE	reasons	REMEDIES	EFFECTS
E 2	there is the corruption	switch off the power	• you can not gain
corrupted	of the configuration	supply of the instru-	access the setting
memory	data of the memory of	ment: unless the alarm	procedures
data	the instrument	disappears, you will	■ all outputs will be
		have to change the	forced OFF
		instrument	
E 0	• the kind of cabinet	• look at the param-	• the compressor wil
cabinet	probe you have con-	eter /0	work in accordance
probe	nected is not right	• test the integrity of	with the parameters
alarm	• the cabinet probe	the probe	C5 and C6
	plays up	• test the instrument-	• if the defrost is run-
	• the connection in-	probe connection	ning, it will immedi
	strument-cabinet	• test the temperature	ately end
	probe is wrong	close to the probe (it	• the defrost will
	• the cabinet tempera-	has to be between	never be activated
	ture is outside the	the limits allowed by	
	limits allowed by the	the working range)	
	working range of		
	the instrument		
ΕI	• the kind of evapora-	■ look at the param-	the defrost will end by
evapora-	tor probe you have	eter /0	time (parameter d3)
tor probe	connected is not	• test the integrity of	
alarm	right	the probe	
	• the evaporator	• test the instrument-	
	probe plays up	probe connection	
	• the connection in-	• test the temperature	
	strument-evaporator	close to the probe (it	
	probe is wrong	has to be between	
	• the evaporator tem-	the limits allowed by	
	perature is outside	the working range)	
	the limits allowed by		
	the working range		
	of the instrument		

cabinet	the cabinet tempera-	test the temperature	no effects
tem-	ture is outside the limit	close to the probe	
perature	you have set with the	(look at the parameters	
lower or	parameter A1 or A2	A0, A1 and A2)	
upper			
tempera-			
ture alarm			

Serial port: TTL with EVCOBUS communication protocol (for the configurer/cloner system CLONE and supervision system RICS).

The instrument shows the indications above flashing.

7 TECHNICAL DATA

7.1 Technical data

Box: self-extinguishing grey.

Size: $75 \times 33.5 \times 81$ mm (2.95 x 1.31 x 3.18 in) the model with extractable terminal blocks (standard model), $75 \times 33.5 \times 62$ mm (2.95 x 1.31 x 2.44 in) the model with screw terminal blocks (by request).

Installation: panel mounting, panel cut out 71×29 mm (2.79 \times 1.14 in), with click brackets (they are supplied by the builder) or screw brackets (by request).

Frontal protection: IP 65.

Connections: extractable terminal blocks with pitch 5 mm (0.19 in, standard model) for cables up to 2.5 mm² (0.38 sq in, power supply, inputs and outputs) or screw terminal blocks with pitch 5 mm (0.19 in, by request) for cables up to 2.5 mm² (0.38 sq in, power supply, inputs and outputs), 5 poles single line male connector with pitch 2.5 mm (0.09 in, serial port).

Ambient temperature: from 0 to 55 $^{\circ}$ C (32 to 131 $^{\circ}$ F, 10 ... 90% of relative humidity without condensate).

Power supply: 230 Vac, 50/60 Hz, 1.5 VA (standard model) or 115 Vac, 50/60 Hz, 1.5 VA (by request).

Measure Inputs: 2 (cabinet and evaporator probe) for PTC or NTC probes.

Working range: from -50 to 99 $^{\circ}$ C (-58 to 210 $^{\circ}$ F) for PTC probe, from -40 to 99 $^{\circ}$ C (-40 to 210 $^{\circ}$ F) for NTC probe.

Setpoint range: from -55 to 99 °C (-55 to 99 °F).

 $\label{eq:Resolution: 1 °F with unit of measure in Fahrenheit, 1 °C with unit of measure in Celsius.$

 $\textbf{Display:} \ \ \text{one red LED 3-digit display 13.2 mm (0.51 in) high, output status indicators.}$

Outputs: 2 relays: one 10 A @ 250 Vac relay for one ½ HP @ 230 Vac compressor control (NO contact) and one 8 A @ 250 Vac relay for defrost system control (change-over contact).

Kind of defrost: electric and hot gas defrost.

Defrost control: defrost interval, defrost end temperature and defrost maximum length (automatic and by hand).

WORKING SETPOINT AND CONFIGURATION PARAMETERS

8.1 Working setpoint

LABE	MIN.	MAX.	U.M.	DEF.	WORKING SETPOINT
	r1	r2	°C/°F (4)	0	working setpoint

8.2 First level parameters

LABEL	MIN.	MAX.	U.M.	DEF.	PASSWORD
PA	-55	99	_	0	password

LABEL	MIN.	MAX.	U.M.	DEF.	MEASURE INPUTS
/1	-55	99	°C/°F (4)	0	cabinet probe calibration (you have to set eight points for adjusting one degree)
/6	-55	99	°C/°F ⁽⁴⁾	0	evaporator probe calibration (you have to set eight points for adjusting one degree)

LABEL	MIN.	MAX.	U.M.	DEF.	REGULATOR
r0	1	15	°C/°F (4)	2	hysteresis (differential, it is relative to the working setpoint)

LABEL	MIN.	MAX.	U.M.	DEF.	DEFROST
dA	_	_	°C/°F (4)		evaporator temperature showing

8.3 Second level parameters

LABEL	MIN.	MAX.	U.M.	DEF.	MEASURE INPUTS
/0	1	4	_	1	kind of probe (1 = PTC, 2 = reserved, 3 = NTC, 4 = reserved)
/1	-55	99	°C/°F (4)	0	cabinet probe calibration (you have to set eight points for adjusting one degree)
/6	-55	99	°C/°F (4)	0	evaporator probe calibration (you have to set eight points for adjusting one degree)
/8	0	1	_	1	temperature unit of measure (0 = Fahrenheit degree, 1 = Celsius degree)

LABEL	MIN.	MAX.	U.M.	DEF.	REGULATOR
r0	1	15	°C/°F (4)	2	hysteresis (differential, it is relative to the working setpoint)
r1	-55	r2	°C/°F (4)	-50	minimum value you can assign to the working setpoint
r2	r1	99	°C/°F (4)	50	maximum value you can assign to the working setpoint

ı	LABEL	MIN.	MAX.	U.M.	DEF.	COMPRESSOR PROTECTION
(C0	0	240	min	0	minimum delay between you turn the instrument ON and the first compressor activation
(C1	0	240	min	5	minimum delay between two compressor activation in succession
(C2	0	240	min	3	minimum delay between the compressor gets OFF and the following activation
	C4	0	1	_	0	fixed delay since the compressor gets ON and OFF (1 = YES, for 3 s)
(C5	1	240	min	10	cycle time for the compressor activation during the cabinet probe alarm
(C6	0	100	%	50	percentage of C5 the compressor is ON during the cabinet probe failure

LABEL	MIN.	MAX.	U.M.	DEF.	DEFROST
d0	0	99	h	8	defrost interval (5) (0 = the defrost will never automatically be activated)
d1	0	1	_	0	kind of defrost (0 = electric defrost, 1 = hot gas defrost)
d2	-55	99	°C/°F (4)	2	defrost end temperature (evaporator temperature)
d3	0	240	min	30	defrost maximum length (0 = the defrost will never be activated)
d4	0	1	_	0	defrost activation every time you turn the instrument ON (1 = YES) (5)
d5	0	99	min	0	delay between you turn the instrument ON and the defrost activation (it is important if
					d4 = 1)
d6	0	1	_	1	freeze of the temperature showed by the instrument during the defrost (1 = YES) (6)
d7	0	15	min	2	dripping time
d9	0	1	_	0	compressor protections cleaning at the moment of the defrost activation (it is important if
					d1 = 1; 1 = YES)
dA	_	_	°C/°F (4)	-	evaporator temperature showing

LABEL	MIN.	MAX.	U.M.	DEF.	ALARMS
A0	1	15	°C/°F (4)	2	hysteresis (differential, it is relative to A1 and A2, it is important if A1 and/or A2 \neq 0)
A1	-55	0	°C/°F (4)	-10	lower temperature alarm threshold (it is relative to the working setpoint, $0 = it$ will never be
					activated)
A2	0	99	°C/°F (4)	10	upper temperature alarm threshold (it is relative to the working setpoint, $0 = it$ will never be
					activated)
A3	0	240	min	120	temperature alarm exclusion time since you turn the instrument ON (it is important if A1
					and/or A2 ≠ 0)
A6	0	240	min	5	temperature alarm exclusion time (it is important if A1 and/or A2 \neq 0) (7)
A7	0	240	min	15	temperature alarm exclusion time since the end of the dripping (since the end of d7, it is
					important if A1 and/or A2 ≠ 0)

LABEL	MIN.	MAX.	U.M.	DEF.	serial network (evcobus)
L1	1	15	_	1	instrument address
L2	0	7	_	6	instrument group
L4	0	3	-	1	baud rate (0 = 1,200 baud, 1 = 2,400 baud, 2 = 4,800 baud, 3 = 9,600 baud)

- (4) the unit of measure depends on the parameter /8
- (5) unless the evaporator temperature is below the defrost end temperature you have set with the parameter d2, the defrost will not be activated
- (6) if at the moment of the defrost activation the cabinet temperature is below the value "working setpoint + r0", the instrument will not show temperatures above that value; if at the moment of the defrost activation the cabinet temperature is above the value "working setpoint + r0", the instrument will not show the increases of the temperature (if the increase takes place below the value "working setpoint + r0", look at the previous case); the instrument restores the normal operation once the dripping ends and the cabinet temperature falls below the freeze temperature
- (7) if the temperature alarm does not disappear at the end of the time you have set with the parameter A3, it will further be excluded for the time you have set with the parameter A6; if the temperature alarm takes place during the defrost and does not disappear at the end of the time you have set with the parameter A7, it will further be excluded for the time you have set with the parameter A6.