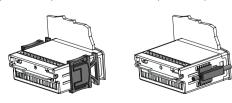
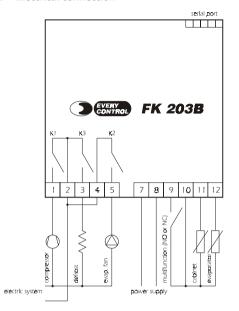


PREPARATIONS


1.1 How to install the instrument

Panel mounting, panel cut out 71 x 29 mm (2.79 x 1.14 in), with click brackets (they are supplied by the builder) or screw brackets (by request).

(1) maximum depth with screw terminal blocks (by request)


maximum depth with extractable terminal blocks (standard model).

installation with click brackets (on the left-hand side, they are supplied by the builder)

and screw brackets (on the right-hand side, by request); if you are using screw brackets, you have to moderate the clamping torque, in order not to damage the box and screw

1.2 Electrical connection

2 **OPERATION**

2.1 Preliminary information

During the normal operation the instrument shows the cabinet temperature.

2.2 How to silence the buzzer

If you have to silence the buzzer:

press (**+**)

2.3 How to activate the defrost by hand

If you have to activate the defrost by hand:

press

(本学)

for 4 s

Unless the evaporator temperature is below the defrost end temperature you have set with the parameter d2, the defrost will not be activated.

3 **WORKING SETPOINT**

3.1 How to set the working setpoint

If you have to modify the working setpoint value:

set and ♠ or (▶)

(3) you can set the working setpoint between the limits you have set with the parameters r1 and r2.

CONFIGURATION PARAMETERS

4.1 How to set the configuration parameters

Configuration parameters are arranged on two levels.

If you have to gain access the first level:

press

↑ ₩	land(J.	
ر ۱۰۰۱	(-)	

for 4 s : the instrument will show PR

If you have to select a parameter:

If you have to modify the value of the parameter:

If you have to gain access the second level:

■ gain access the first level

press

press press

for 4 s : the instrument

will show ႕ 🛚

If you have to quit the procedure:

press

for 4 s or do not operate for about 60 s.

SIGNALS

5.1 Signals

LED	MEANING
*	Compressor LED
	if it is lighted, the compressor will be ON
	if it flashes, a compressor delay will be running (look at the parameters
	C0, C1, C2 and C4)
*	Defrost LED
	if it is lighted, the defrost output will be activated
	if it flashes:
	• a defrost delay will be running (look at the parameters C0, C1, C2 and
	C4)
	• the dripping will be running (look at the parameter d7)
	the freezing fluid heating will be running (look at the parameter dP)
@	Evaporator fan LED
	if it is lighted, the evaporator fan will be ON
	if it flashes, the after dripping evaporator fan delay will be running (look
	at the parameter F5)

ALARMS 6

Alarms

CODE	reasons	REMEDIES	EFFECTS
E 2	there is the corruption	switch off the power	• you can not gair
corrupted	of the configuration	supply of the instru-	access the setting
memory	data of the memory of	ment: unless the alarm	procedures
data	the instrument	disappears, you will	■ all outputs will b
		have to change the	forced OFF
		instrument	
E 0	• the kind of cabinet	■ look at the param-	• the compressor wi
cabinet	probe you have con-	eter /0	work in accordanc
probe	nected is not right	• test the integrity of	with the parameter
alarm	• the cabinet probe	the probe	C5 and C6
	plays up	• test the instrument-	■ if the defrost is rur
	• the connection in-	probe connection	ning, it will immed
	strument-cabinet	• test the temperature	ately end
	probe is wrong	close to the probe (it	• the defrost wi
	the cabinet tempera-	has to be between	never be activated
	ture is outside the	the limits allowed by	
	limits allowed by the	the working range)	
	working range of		
	the instrument		
E I	• the kind of evapora-	• look at the param-	• if the parameter F
evapora-	tor probe you have	eter /0	has value 3 or 4, th
tor probe	connected is not	• test the integrity of	evaporator fan wi
alarm	right	the probe	work in accordanc
	• the evaporator	• test the instrument-	with the compre
	probe plays up	probe connection	sor, except wha
	• the connection in-	• test the temperature	you have set wit
	strument-evaporator	close to the probe (it	the parameters F
	probe is wrong	has to be between	and F5
	• the evaporator tem-	the limits allowed by	• the defrost will en
	perature is outside	the working range)	by time (paramete
	the limits allowed by		d3)
	the working range		
	of the instrument		

F5	0	15	min	2	after dripping evaporator fan delay
F6	0	1	_	0	kind of evaporator fan stop temperature (it is important if $A = 1$ and $A = 3$ or 4;
					0 = absolute evaporator fan stop temperature, 1 = evaporator fan stop temperature relative
					to the cabinet temperature) (11)
F7	0	4	_	4	evaporator fan action during the normal operation (0 = it will be forced OFF, 1 = it will be
					forced ON, 2 = it will work in accordance with the compressor, 3 = it will work in accordance
					with F1 and F2, $4 = if$ the compressor is ON, it will work in accordance with F1 and F2, if the
					compressor is OFF, it will be forced OFF)

LABEL	MIN.	MAX.	U.M.	DEF.	DIGITAL INPUTS
iO	0	5	_	4	action given by the multifunction input activation $(0 = \text{inactive}, 1 = \text{once } d5 \text{ has passed, the } d5)$
					defrost will be activated (7) , 2 = reserved, 3 = the compressor will be forced ON
					4 = the compressor and the evaporator fan will be forced OFF, $5 =$ the evaporator fan will b
					forced OFF)
i1	0	1	_	0	kind of contact of the multifunction input (it is important if i0 \neq 0; 0 = NO, 1 = NC)

LABEL	MIN.	MAX.	U.M.	DEF.	SERIAL NETWORK (EVCOBUS)
L1	1	15	_	1	instrument address
L2	0	7	_	6	instrument group
L4	0	3	_	1	baud rate (0 = 1,200 baud, 1 = 2,400 baud, 2 = 4,800 baud, 3 = 9,600 baud)

- (4) the unit of measure depends on the parameter /8
- (5) once you have modified the value of the parameter, you will have to switch off the power supply of the instrument
- (6) If the parameter has value 0, the defrost will end by time (parameter d3); if the parameter F7 has value 3 or 4, the evaporator fan will work in accordance with the compressor, except what you have set with the parameters F4 and F5
- 7) unless the evaporator temperature is below the defrost end temperature you have set with the parameter d2, the defrost will not be activated
- if at the moment of the defrost activation the cabinet temperature is below the value "working setpoint + r0", the instrument will not show temperatures above that value; if at the moment of the defrost activation the cabinet temperature is above the value "working setpoint + r0", the instrument will not show the increases of the temperature (if the increase takes place below the value "working setpoint + r0", look at the previous case); the instrument restores the normal operation once the after dripping evaporator fan delay ends and the cabinet temperature falls below the freeze temperature
- (9) if at the moment of the defrost activation the compressor is ON since a time lower than the one you have set with the parameter, the compressor will be forced ON for a time such as to finish the time you have set with the parameter
- [10] if the temperature alarm does not disappear at the end of the time you have set with the parameter A3, it will further be excluded for the time you have set with the parameter A6; if the temperature alarm takes place during the defrost and does not disappear at the end of the time you have set with the parameter A7, it will further be excluded for the time you have set with the parameter A6.
- (11) the evaporator fan stop temperature is "cabinet temperature F1"; you always have to consider the parameter F1 with positive sign.

Я∟п	the multifunction input	deactivate the input	you will get the action
for 1 s	is active	(look at the parameters	you have chosen with
every 4		i0 and i1)	the parameter i0
cabinet	the cabinet tempera-	test the temperature	no effects
tem-	ture is outside the limit	close to the probe	
perature	you have set with the	(look at the parameters	
lower or	parameter A1 or A2	A0, A1 and A2)	
upper			
tempera-			
ture alarm			

The instrument shows the indications above flashing, except the indication 'Ain' (it is alternated with the cabinet temperature) and the buzzer utters an intermittent beep.

7 TECHNICAL DATA

7.1 Technical data

Box: self-extinguishing grey.

Size: $75 \times 33.5 \times 81 \text{ mm}$ (2.95 x 1.31 x 3.18 in) the model with extractable terminal blocks (standard model), $75 \times 33.5 \times 62 \text{ mm}$ (2.95 x 1.31 x 2.44 in) the model with screw terminal blocks (by request).

Installation: panel mounting, panel cut out 71 x 29 mm (2.79 x 1.14 in), with click brackets (they are supplied by the builder) or screw brackets (by request).

Frontal protection: IP 65.

Connections: extractable terminal blocks with pitch 5 mm (0.19 in, standard model) for cables up to 2.5 mm² (0.38 sq in, power supply, inputs and outputs) or screw terminal blocks with pitch 5 mm (0.19 in, by request) for cables up to 2.5 mm² (0.38 sq in, power supply, inputs and outputs), 5 poles single line male connector with pitch 2.5 mm (0.09 in, serial port).

Ambient temperature: from 0 to 55 °C (32 to 131 °F, 10 ... 90% of relative humidity without condensatel.

Power supply: 12 Vac/dc, 50/60 Hz, 1.5 VA (standard model) or 12-24 Vac/dc, 50/60 Hz, 1.5 VA (by request).

Alarm buzzer: included.

Measure Inputs: 2 (cabinet and evaporator probe) for PTC or NTC probes.

Digital inputs: 1 multifunction input (NO or NC contact) without voltage (it works with 5 mA).

Working range: from -50 to 99 °C \mid -58 to 210 °F) for PTC probe, from -40 to 99 °C \mid -40 to 210 °F) for NTC probe.

Setpoint range: from -55 to 99 °C (-55 to 99 °F).

Resolution: I $^{\circ}$ F with unit of measure in Fahrenheit, I $^{\circ}$ C with unit of measure in Celsius.

Display: one red LED 3-digit display 13.2 mm (0.51 in) high, output status indicators.

Outputs: 3 relays: one 10 A @ 250 Vac relay for one ½ HP @ 230 Vac compressor control (NO contact), one 8 A @ 250 Vac relay for evaporator fan control (NO contact) and one 8 A @ 250 Vac relay for defrost system control (NO contact).

Kind of defrost: electric and hot gas defrost.

Defrost control: defrost interval, defrost end temperature and defrost maximum length (automatic, by hand and remote).

Serial port: TTL with EVCOBUS communication protocol (for the configurer/cloner system CLONE and supervision system RICS).

WORKING SETPOINT AND CONFIGURATION PARAMETERS

8.1 Working setpoint

LAE	BEL MII	IN.	MAX.	U.M.	DEF.	WORKING SETPOINT
	r1		r2	°C/°F (4)	0	working setpoint

8.2 First level parameters

ı	ABEL	MIN.	MAX.	U.M.	DEF.	PASSWORD
Ī	PA	-55	99	_	0	password

LABEL	MIN.	MAX.	U.M.	DEF.	MEASURE INPUTS
/1	-55	99	°C/°F (4)	0	cabinet probe calibration (you have to set eight points for adjusting one degree)
/6	-55	99	°C/°F (4)	0	evaporator probe calibration (it is important if $/A = 1$, you have to set eight points for adjust-
					ing one degree)

LABEL	MIN.	MAX.	U.M.	DEF.	REGULATOR
r0	1	15	°C/°F (4)	2	hysteresis (differential, it is relative to the working setpoint)

LABE	MIN.	MAX.	U.M.	DEF.	DEFROST
dA	_	_	°C/°F (4)	_	evaporator temperature showing

8.3 Second level parameters

			-		
LAE	BEL MIN.	MAX.	U.M.	DEF.	MEASURE INPUTS
/0	1	4	_	1	kind of probe (1 = PTC, 2 = reserved, 3 = NTC, 4 = reserved)
/1	-55	99	°C/°F (4)	0	cabinet probe calibration (you have to set eight points for adjusting one degree)
/6	-55	99	°C/°F (4)	0	evaporator probe calibration (it is important if $A = 1$, you have to set eight points for adjust-
					ing one degree)
/8	0	1	_	1	temperature unit of measure (0 = Fahrenheit degree, 1 = Celsius degree)
/A	0	1	_	1	evaporator probe presence (and its functions; 1 = YES) (5) (6)

LABEL	MIN.	MAX.	U.M.	DEF.	REGULATOR
r0	1	15	°C/°F (4)	2	hysteresis (differential, it is relative to the working setpoint)
r1	-55	r2	°C/°F (4)	-50	minimum value you can assign to the working setpoint
r2	r1	99	°C/°F (4)	50	maximum value you can assign to the working setpoint

LABEL	MIN.	MAX.	U.M.	DEF.	COMPRESSOR PROTECTION
C0	0	240	min	0	minimum delay between you turn the instrument ON and the first compressor activation
C1	0	240	min	5	minimum delay between two compressor activation in succession
C2	0	240	min	3	minimum delay between the compressor gets OFF and the following activation
C4	0	1	_	0	fixed delay since the compressor gets ON and OFF (1 = YES, for 3 s)

C5	1	240	min	10	cycle time for the compressor activation during the cabinet probe alarm
C6	0	100	%	50	percentage of C5 the compressor is ON during the cabinet probe failure

LABEL	MIN.	MAX.	U.M.	DEF.	DEFROST
d0	0	99	h	8	defrost interval (7) (0 = the defrost will never automatically be activated)
d1	0	1	_	0	kind of defrost (0 = electric defrost, 1 = hot gas defrost)
d2	-55	99	°C/°F (4)	2	defrost end temperature (evaporator temperature, it is important if /A = 1)
d3	0	240	min	30	defrost maximum length (0 = the defrost will never be activated)
d4	0	1	_	0	defrost activation every time you turn the instrument ON (1 = YES) (7)
d5	0	99	min	0	delay between you turn the instrument ON and the defrost activation (it is important if
					d4 = 1)
d6	0	1	_	1	freeze of the temperature showed by the instrument during the defrost (1 = YES) (8)
d7	0	15	min	2	dripping time
d9	0	1	_	0	compressor protections cleaning at the moment of the defrost activation (it is important if
					d1 = 1; 1 = YES)
dA	_	_	°C/°F (4)	_	evaporator temperature showing (it is important if /A = 1)
dP	0	99	min	0	minimum time the compressor must have been ON at the moment of the defrost activation
					in order that the defrost can be activated (it is important if $d1 = 1$) (9)

LABEL	MIN.	MAX.	U.M.	DEF.	ALARMS
A0	1	15	°C/°F (4)	2	hysteresis (differential, it is relative to A1 and A2, it is important if A1 and/or A2 ≠ 0)
A1	-55	0	°C/°F (4)	-10	lower temperature alarm threshold (it is relative to the working setpoint, 0 = it will never be activated)
A2	0	99	°C/°F (4)	10	upper temperature alarm threshold (it is relative to the working setpoint, 0 = it will never be activated)
A3	0	240	min	120	temperature alarm exclusion time since you turn the instrument ON (it is important if A1 and/or A2 \neq 0)
A5	-1	120	min	30	buzzer exclusion time since the multifunction input activation (it is important if i0 \neq 0; -1 = the buzzer will never be activated)
A6	0	240	min	5	temperature alarm exclusion time (it is important if A1 and/or A2 \neq 0) (10)
A7	0	240	min	15	temperature alarm exclusion time since the end of the after dripping evaporator fan delay (since the end of F5, it is important if A1 and/or A2 \neq 0)

LABEL	MIN.	MAX.	U.M.	DEF.	EVAPORATOR FAN
F1	-55	99	°C/°F ⁽⁴⁾	-1	evaporator fan stop temperature (evaporator temperature, it is important if /A = 1 and
					F7 = 3 or 4); look at $F6$ as well
F2	1	15	°C/°F ⁽⁴⁾	2	hysteresis (differential, it is relative to F1, it is important if $A = 1$ and F7 = 3 or 4)
F4	0	2	_	0	evaporator fan action during the defrost and dripping (0 = it will be forced OFF,
					1 = it will be forced ON, 2 = it will work in accordance with F7)