and screw brackets (on the right-hand side, by request); if you are using screw brack-

ets, you have to moderate the clamping torque, in order not to damage the box and

screw brackets

OPERATION 2

2.1 Preliminary information

During the normal operation the instrument shows the room

temperature.

3

press

press

press

2.2 How to silence the buzzer

If you have to silence the buzzer (optional):

• press 🕢

WORKING SETPOINT

3.1 How to set the working setpoint

If you have to modify the first working setpoint value:

- set within 2 s 💦 (3) (4)
- (↑) or (↓) press
- do not operate for 2 s

set

If you have to modify the second working setpoint value:

- during the first working setpoint modification
- press (▲) or (▲) set

within 2 s

- (3) you can set the first working setpoint between the limits you have set with the parameters rA1 and rA2
- (4) unless the parameter rA5 has value 0, you can not modify the first working setpoint
- (5) if the parameter -/0 has value 3, the second working setpoint will not be showed
- (7) unless the parameter rb5 has value 0, you can not modify the second working

4 **CONFIGURATION PARAMETERS**

Configuration parameters are arranged on two levels.

If you have to gain access the first level:

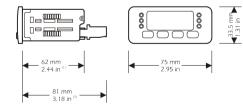
🔦 and 🖌 press

will show **P A**

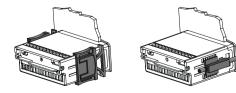
for 4 s : the instrument

If you have to select a parameter:

If you have to modify the value of the parameter:


FK 401A **ON-OFF two outputs digital thermoregula-**

tor	
	ſ
Version 1.03 of 16 th June 2004	
File fk401a_eng_v1.03.pdf	
PT	
EVCO S.r.I.	
Via Mezzaterra 6, 32036 Sedico Belluno ITALY	
Phone 0039-0437-852468 • Fax 0039-0437-83648	


1 PREPARATIONS

1.1 How to install the instrument

Panel mounting, panel cut out 71 x 29 mm (2.79 x 1.14 in), with click brackets (they are supplied by the builder) or screw brackets (by request).

- (1) maximum depth with screw terminal blocks
- (2) maximum depth with extractable terminal blocks.

installation with click brackets (on the left-hand side, they are supplied by the builder)

 \sim

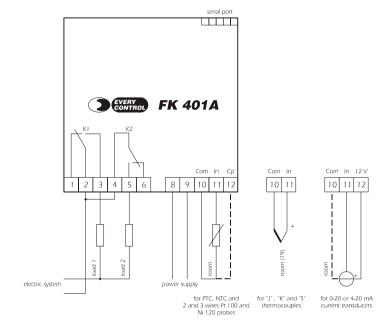
press (set)

- (6) you can set the second working setpoint between the limits you have set with

the parameters rb1 and rb2

setpoint

4.1 How to set the configuration parameters


 press 	▲ or ▲	within 2 s	6
 press 	set		6.1
lf you hav	ve to gain access the sec	ond level:	CODE
 gain ad 	cess the first level		E 2
 press 	♠ or ●	for selecting PA	corrupte
 press 	set		memory
 press 	♠ or ●	within 2 s 🏹 for setting " -19 "	data
press	set		
 press 	▲ and ↓	for 4 s 💦: the instrument	ED
		will show – 🗂	room
f you hav	ve to quit the procedure:		probe
 press 	▲ and ▲	for 4 s 🏹 or do not op-	alarm
		erate for about 60 s.	
5 SI	GNALS		
5.1 Si	gnals		
LED	M	EANING	
out 1	Load 1 LED		
	if it is lighted, the load 1 will be	ON	
	if it flashes, a load 1 delay will b	e running (look at the parameters CAO,	
	CA1, CA2 and CA4)		
out 2	Load 2 LED		
	if it is lighted, the load 2 will be	ON	EDC
	if it flashes, a load 2 delay will b	e running (look at the parameters Cb0,	cold joint
	Cb1, Cb2 and Cb4)		third win
°F	Fahrenheit degree LED		alarm
	if it is lighted, the unit of meas	ure of the temperature showed by the	
	instrument is Fahrenheit degree		
°c	Celsius degree LED		
	if it is lighted, the unit of meas	ure of the temperature showed by the	
	instrument is Celsius degree		
INDICAT.	М	EANING	
	you can not modify the workin	a setpoint (look at the parameters rA5	

 you can not modify the working setpoint (look at the parameters rA5 $% \left({{\rm rAS}}\right) =0$
and/or rb5)

6.1 A	Alarms									
CODE	REASONS	REMEDIES	EFFECTS							
62	there is the corruption	switch off the power	• you can not gain							
corrupted	of the configuration	supply of the instru-	access the setting							
memory	data of the memory of	ment: unless the alarm	procedures							
data	the instrument	disappears, you will	 all outputs will be 							
		have to change the in-	forced OFF							
		strument								
E 0	• the kind of room	Iook at the param-	• the load 1 will be							
room	probe you have con-	eter /0	forced to the status							
probe	nected is not right	• test the integrity of	you have set with							
alarm	• the room probe	the probe	the parameter CA3							
	plays up	• test the instrument-	• the load 2 will be							
	• the connection in-	probe connection	forced to the status							
	strument-room	 test the temperature 	you have set with							
	probe is wrong	close to the probe (it	the parameter Cb3							
	• the room tempera-	has to be between								
	ture is outside the	the limits allowed by								
	limits allowed by the	the working range)								
	working range of									
	the instrument									
EDE	• if the instrument has	• in the first case,	• the load 1 will be							
cold joint/	been preset for work-	switch off the power	forced to the status							
third wire	ing with "J" , "K" or	supply of the instru-	you have set with							
alarm	"S" thermocouples,	ment: unless the	the parameter CA3							
	there will be a defect	alarm disappears,	• the load 2 will be							
	in the cold joint com-	you will have to	forced to the status							
	pensation circuit change the ins		you have set with							
	• if the instrument has	ment	the parameter Cb3							
	been preset for work-	 in the second case, 								
	ing with 2 or 3 wires	test the instrument-								
	Pt 100 or Ni 120	probe connection								
	probes, the third									
	wire of the probe will									
	not be connected									

9 ELECTRICAL CONNECTION

9.1 Electrical connection

(19) provide the probe with a protection able to protect it against contacts with metal parts or use insulated probes.

LABEL	MIN.	MAX.	U.M.	DEF.	SECOND ALARM
Ab0	0.1	999	°C/°F ⁽⁸⁾	0.1	hysteresis (differential, it is relative to Ab1, it is important if Ab4 \neq 1)
Ab1	-99	999	°C/°F ⁽⁸⁾	0.0	second temperature alarm threshold (it is important if Ab4 \neq 1); look at Ab4 as well
Ab3	0	999	min	0	second temperature alarm exclusion time since you turn the instrument ON (it is important
					if $Ab4 \neq 1$)
Ab4	1	7	-	1	kind of temperature alarm (1 = it will never be activated, 2 = absolute lower temperature
					alarm, $3 = absolute$ upper temperature alarm, $4 = lower$ temperature alarm relative to the
					first working setpoint, 5 = upper temperature alarm relative to the first working setpoint,
					6 = lower temperature alarm relative to the first working setpoint with automatic calculation
					and enabling, 7 = upper temperature alarm relative to the first working setpoint with auto-
					matic calculation and enabling)

LABEL	MIN.	MAX.	U.M.	DEF.	serial network (evcobus)
L1	1	15	_	1	instrument address
L2	0	7	_	0	instrument group
L4	0	3	_	1	baud rate (0 = 1,200 baud, 1 = 2,400 baud, 2 = 4,800 baud, 3 = 9,600 baud)

(8) the unit of measure depends on the parameter /8

(9) if the parameter -/0 has value 3, the parameter will not be showed

(10) if the parameter rA3 has value 0, you have to set the parameter rA0 with positive sign; if the parameter rA3 has value 1, you have to set the parameter rA0 with negative sign

(11) if the parameter -/0 has value 3, the parameter will set the neutral zone value

(12) if the parameter rb3 has value 0, you have to set the parameter rb0 with positive sign; if the parameter rb3 has value 1, you have to set the parameter rb0 with negative sign

(13) if the parameter has value 3, the load 1 will be ON when the room temperature will rise above the value "first working setpoint + rA0" and the load 2 will be ON when the

room temperature will fall below the value "first working setpoint - rA0" (the loads will be ON as long as the room temperature will get the first working setpoint)

(14) the value depends on the kind of measure input the instrument has been preset

(15) if the instrument has been preset for working with "J", "K" or "S" thermocouples, the parameter will not be showed

(16) unless the parameter /8 has value 1, the parameter will not be showed

(17) unless the instrument has been preset for working with 0-20 or 4-20 mA current transducers, the parameter will not be showed

(18) if the instrument has been preset for working with 0-20 or 4-20 mA current transducers, the parameter will not be important.

AL I	the room temperature	test the temperature	no effect
first	is outside the limit you	close to the probe	
tempera-	have set with the pa-	(look at the parameters	
ture alarm	rameter AA1	AA0, AA1 and AA4)	
AL 2	the room temperature	test the temperature	no effect
second	is outside the limit you	close to the probe	
tempera-	have set with the pa-	(look at the parameters	
ture alarm	rameter Ab1	Ab0, Ab1 and Ab4)	

The instrument shows the indications above alternated with the room temperature,

except the indications "E2", "E0" and "EOC" (they flash) and the buzzer (optional) utters an intermittent beep.

7 TECHNICAL DATA

7.1 Technical data

Box: self-extinguishing grey.

Size: $75 \times 33.5 \times 81 \text{ mm}$ (2.95 x 1.31 x 3.18 in) the model with extractable terminal blocks, $75 \times 33.5 \times 62 \text{ mm}$ (2.95 x 1.31 x 2.44 in) the model with screw terminal blocks. Installation: panel mounting, panel cut out $71 \times 29 \text{ mm}$ (2.79 x 1.14 in), with click brackets (they are supplied by the builder) or screw brackets (by request).

Frontal protection: IP 65.

Connections: extractable terminal blocks with pitch 5 mm (0.19 in) for cables up to 2.5 mm² (0.38 sq in, power supply, input and outputs) or screw terminal blocks with pitch 5 mm (0.19 in) for cables up to 2.5 mm² (0.38 sq in, power supply, input and outputs), 5 poles single line male connector with pitch 2.5 mm (0.09 in, serial port). **Ambient temperature:** from 0 to 55 °C (32 to 131 °F, 10 ... 90% of relative humidity without condensate).

Power supply: 12-24 Vac/dc, 50/60 Hz, 1.5 VA (standard model) or 12 Vac/dc, 50/60 Hz, 1.5 VA (by request).

Alarm buzzer: optional.

Measure inputs: 1 (room probe), depending on the model, for PTC or NTC probes, "J", "K" or "S" thermocouples, 2 or 3 wires Pt 100 or Ni 120 probes, 0-20 or 4-20 mA current transducers.

At terminal 12 there are 12 V you can use in order to supply the transducer.

Working range: from -50 to 150 °C (-58 to 302 °F) for PTC probe, from -40 to 110 °C

(40 to 230 °F) for NTC probe, from 0 to 700 °C (32 to 999 °F) for "J" thermocouple,

§ from 0 to 999 °C (32 to 999 °F) for "K" thermocouple, from 0 to 999 °C (32 to 999 °F) for

"S" thermocouple, from -50 to 600 °C (-58 to 999 °F) for 2 or 3 wires Pt 100 probe, from

-80 to 260 °C (-99 to 500 °F) for 2 or 3 wires Ni 120 probe.

Setpoint range: from -99 to 999 °C (-99 to 999 °F).

Resolution: 1 °F with unit of measure in Fahrenheit, 0.1 °C (except the instruments

preset for working with "J" , "K" or "S" thermocouples) or 1 °⊂ with unit of measure in

Celsius.

Display: one red LED 3-digit display 13.2 mm (0.51 in) high, output status indicators,

temperature unit of measure indicators.

Outputs: 2 relays: one 10 A @ 250 Vac relay for load 1 control (change-over contact)

and one 8 A @ 250 Vac relay for load 2 control (change-over contact).

Serial port: TTL with EVCOBUS communication protocol.

8 WORKING SETPOINT AND CONFIGURATION PARAMETERS

8.1	Working	setpoint
-----	---------	----------

LABEL	MIN.	MAX.	U.M.	DEF.	WORKING SETPOINT
	rA1	rA2	°C/°F ⁽⁸⁾	0.0	first working setpoint
	rb1	rb2	°C/°F ⁽⁸⁾	0.0	second working setpoint ⁽⁹⁾

8.2 First level parameters

LABEL	MIN.	MAX.	U.M.	DEF.	PASSWORD
PA	-90	100		0	password

LABEL	MIN.	MAX.	U.M.	DEF.	MEASURE INPUTS
/1	-25	25.0	°C/°F ⁽⁸⁾	0.0	room probe calibration
LABEL	MIN.	MAX.	U.M.	DEF.	FIRST REGULATOR

LABEL	MIN.	MAX.	U.M.	DEF.	SECOND REGULATOR
rb0	-99	99.9	°C/°F ⁽⁸⁾	-0.2	hysteresis (differential, it is relative to the second working setpoint); look at rb4 as well $^{(9)}$ $^{(12)}$

-99 99.9 °C/°F^(B) -0.2 hysteresis (differential, it is relative to the first working setpoint); look at rA4 as well ^{(10) (11)}

8.3 Second level parameters

rA0

LABEL	MIN.	MAX.	U.M.	DEF.	KIND OF REGULATOR	
-/0	1	3		2	kind of regulator (1 = the first working setpoint is absolute, the second one is relative to the	
					first, 2 = two absolute working setpoint, 3 = neutral zone) $^{(13)}$	

LABEL	MIN.	MAX.	U.M.	DEF.	MEASURE INPUTS	
/0	01	41		(14)	kind of probe (01 = PTC, 03 = NTC, 10 = "J" Tc, 11 = "K" Tc, 12 = "S" Tc, 20 = 3 wires Pt 100,	
					21 = 2 wires Pt 100, 30 = 4-20 mA, 31 = 0-20 mA, 40 = 3 wires Ni 120, 41 = 2 wires Ni 120)	
/1	-25	25.0	°C/°F ⁽⁸⁾	0.0	room probe calibration	
/5	0	1		1	temperature resolution $(0 = 1 \text{ degree}, 1 = 0.1 \text{ degrees})^{(15)}$	
/6	-99	999	points	-20	minimum value of the range of the transducer (17)	
/7	-99	999	points	80	maximum value of the range of the transducer ⁽¹⁷⁾	
/8	0	1		1	temperature unit of measure (0 = Fahrenheit degree, 1 = Celsius degree) (18)	

LABEL	MIN.	MAX.	U.M.	DEF.	FIRST REGULATOR	
rA0	-99	99.9	°C/°F ⁽⁸⁾	-0.2 hysteresis (differential, it is relative to the first working setpoint); look at rA4 as well [10] [11]		
rA1	-99	rA2	°C/°F ⁽⁸⁾	⁽¹⁴⁾ minimum value you can assign to the first working setpoint		
rA2	rA1	999	°C/°F ⁽⁸⁾	(14)	maximum value you can assign to the first working setpoint	
rA3	0	1		1	cooling or heating action (0 = cooling action) $^{(9)}$	
rA4	0	1	-	0	kind of hysteresis (0 = asymmetrical, 1 = symmetrical)	

rA5	0	1	_	0	first working setpoint modification lock-out $(1 = YES)$
175	0	1		0	$\frac{1}{1}$

LABEL	MIN.	MAX.	U.M.	DEF.	second regulator	
rb0	-99	99.9	°C/°F ⁽⁸⁾	-0.2	hysteresis (differential, it is relative to the second working setpoint); look at rb4 as well (9) (12)	
rb1	-99	rb2	°C/°F ⁽⁸⁾	(14)	minimum value you can assign to the second working setpoint ⁽⁹⁾	
rb2	rb1	999	°C/°F ⁽⁸⁾	(14)	maximum value you can assign to the second working setpoint ⁽⁹⁾	
rb3	0	1		1	cooling or heating action (0 = cooling action) (9)	
rb4	0	1	-	0	kind of hysteresis (0 = asymmetrical, 1 = symmetrical) ⁽⁹⁾	
rb5	0	1	-	0	second working setpoint modification lock-out (1 = YES) $^{(9)}$	

LABEL MIN. DEF. LOAD 1 PROTECTION MAX. U.M. CA0 999 minimum delay between you turn the instrument ON and the first load 1 activation 0 0 CA1 0 999 0 minimum delay between two load 1 activation in succession 999 0 CA2 0 minimum delay between the load 1 gets OFF and the following activation CA3 0 0 load 1 status during the room probe alarm (0 = it will be forced OFF, 1 = it will be forced ON)

0

CA4 0

LABEL	MIN.	MAX.	U.M.	DEF.	LOAD 2 PROTECTION	
Cb0	0	999	s	0	minimum delay between you turn the instrument ON and the first load 2 activation	
Cb1	0	999	s	0	minimum delay between two load 2 activation in succession	
Cb2	0	999	s	0	minimum delay between the load 2 gets OFF and the following activation	
Cb3	0	1		0	load 2 status during the room probe alarm ($0 = it$ will be forced OFF, $1 = it$ will be forced ON)	
Cb4	0	1		0	fixed delay since the load 2 gets ON and OFF $(1 = YES, for 3 s)$	

fixed delay since the load 1 gets ON and OFF (1 = YES, for 3 s)

LABEL	MIN.	MAX.	U.M.	DEF.	FIRST ALARM	
AA0	0.1	999	°C/°F ⁽⁸⁾	0.1	hysteresis (differential, it is relative to AA1, it is important if AA4 \neq 1)	
AA1	-99	999	°C/°F ⁽⁸⁾	0.0	first temperature alarm threshold (it is important if AA4 \neq 1); look at AA4 as well	
AA3	0	999	min	0	first temperature alarm exclusion time since you turn the instrument ON (it is important if AA4 \neq 1)	
AA4	1	7	_	1	kind of temperature alarm (1 = it will never be activated, 2 = absolute lower temperature alarm, 3 = absolute upper temperature alarm, 4 = lower temperature alarm relative to the first working setpoint, 5 = upper temperature alarm relative to the first working setpoint, 6 = lower temperature alarm relative to the first working setpoint with automatic calculation and enabling, 7 = upper temperature alarm relative to the first working setpoint with automatic calculation and enabling)	