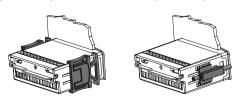


PREPARATIONS


1.1 How to install the instrument

Panel mounting, panel cut out 71 x 29 mm (2.79×1.14 in), with click brackets (they are supplied by the builder) or screw brackets (by request).

(1) maximum depth with screw terminal blocks (by request)

(2) maximum depth with extractable terminal blocks (standard model).

installation with click brackets (on the left-hand side, they are supplied by the builder)

and screw brackets (on the right-hand side, by request); if you are using screw brackets, you have to moderate the clamping torque, in order not to damage the box and screw brackets.

OPERATION

2.1 Preliminary information

During the normal operation the instrument shows the process variable.

3 WORKING SETPOINT

3.1 How to set the working setpoint

If you have to modify the first working setpoint value:

■ press set

press

press

♠ or ◆

within 2 s

do not operate for 2 s

If you have to modify the second working setpoint value:

- press set
- setpoint modification

during the first working

- (*) or (*) within 2 s (5) (6) (7)
- press set
- [3] you can set the first working setpoint between the limits you have set with the parameters rA1 and rA2
- $(4) \qquad \hbox{unless the parameter rA5 has value 0, you can not modify the first working setpoint } \\$
- (5) if the parameter -/0 has value 3, the second working setpoint will not be showed
- (6) you can set the second working setpoint between the limits you have set with the parameters rb1 and rb2
- (7) unless the parameter rb5 has value 0, you can not modify the second working setpoint.

4 CONFIGURATION PARAMETERS

4.1 How to set the configuration parameters

Configuration parameters are arranged on two levels.

If you have to gain access the first level:

press

♠ and ◆

for 4 s $\widehat{)}$: the instrument

will show 🏳 🦰

If you have to select a parameter:

press

lacktriangledown or lacktriangledown

If you have to modify the value of the parameter:

- press
- set
- within 2 s

- press
- se

If you have to gain access the second level:

gain access the first level

♠ or ♠ for selecting PA press

press

within 2 s for setting press **↑** or **↓** "-19 "

press for 4 s : the instrument ♠ and ♠ press will show - -

If you have to quit the procedure:

♠ and ♠

for 4 s or do not operate for about 60 s.

SIGNALS

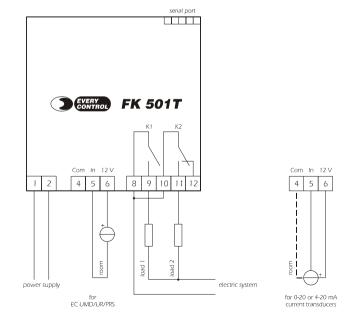
5.1 Signals

J.1 J.	3								
LED	MEANING								
out 1	Load 1 LED								
	if it is lighted, the load 1 will be ON								
	if it flashes, a load 1 delay will be running (look at the parameters CAO,								
	CA1, CA2 and CA4)								
out 2	Load 2 LED								
	if it is lighted, the load 2 will be ON								
	if it flashes, a load 2 delay will be running (look at the parameters Cb0,								
	Cb1, Cb2 and Cb4)								
%r.H.	Relative humidity LED								
	if it is lighted, the unit of measure of the process variable is relative hu-								
	midity								
bar	Bar LED								
	if it is lighted, the unit of measure of the process variable is bar								

INDICAT.	MEANING
	you can not modify the working setpoint (look at the parameters rA5
	and/or rb5)

ALARMS

Alarms


6.1 A	larms		
CODE	reasons	REMEDIES	EFFECTS
E 2	there is the corruption	switch off the power	• you can not gain
corrupted	of the configuration	supply of the instru-	access the setting
memory	data of the memory of	ment: unless the alarm	procedures
data	the instrument	disappears, you will	■ all outputs will be
		have to change the in-	forced OFF
		strument	
E 0	• the kind of room	• look at the param-	• the load 1 will be
room	probe you have con-	eter /0	forced to the status
probe	nected is not right	■ test the integrity of	you have set with
alarm	• the room probe	the probe	the parameter CA3
	plays up	• test the instrument-	■ the load 2 will be
	• the connection in-	probe connection	forced to the status
	strument-room	• test the process vari-	you have set with
	probe is wrong	able close to the	the parameter Cb3
	• the process variable	probe (it has to be	
	is outside the limits al-	between the limits	
	lowed by the work-	allowed by the work-	
	ing range of the in-	ing range)	
	strument		
AL I	the process variable is	test the process vari-	no effects
first	outside the limit you	able close to the probe	
process	have set with the pa-	(look at the parameters	
variable	rameter AA1	AA0, AA1 and AA4)	
alarm			
AL2	the process variable is	test the process vari-	no effects
second	outside the limit you	able close to the probe	
process	have set with the pa-	(look at the parameters	
variable	rameter Ab1	Ab0, Ab1 and Ab4)	
alarm			

LABEL	MIN.	MAX.	U.M.	DEF.	serial network (evcobus)
L1	1	15	_	1	instrument address
L2	0	7	_	0	instrument group
L4	0	3	_	1	baud rate (0 = 1,200 baud, 1 = 2,400 baud, 2 = 4,800 baud, 3 = 9,600 baud)

- (8) the unit of measure depends on the parameter /d
- (9) if the parameter -/0 has value 3, the parameter will not be showed
- [10] If the parameter rA3 has value 0, you have to set the parameter rA0 with positive sign; if the parameter rA3 has value 1, you have to set the parameter rA0 with negative sign
- (11) if the parameter -/0 has value 3, the parameter will set the neutral zone value
- [12] if the parameter rb3 has value 0, you have to set the parameter rb0 with positive sign; if the parameter rb3 has value 1, you have to set the parameter rb0 with negative sign
- [13] if the parameter has value 3, the load 1 will be ON when the process variable will rise above the value "first working setpoint + rA0" and the load 2 will be ON when the process variable will fall below the value "first working setpoint - rA0" (the loads will be ON as long as the process variable will get the first working setpoint)
- (14) if the parameter /9 has value 0, the parameter will not be showed
- (15) the value depends on the range of the transducer the instrument has been preset
- (16) if the parameter has value 3 or 4, press to show the process variable
- [17] if the immediate change of the process variable is minor than the one you have set with the parameter, the process variable will be updated every 7.5 s by an algorithm of the instrument
- (18) if the parameter has value 2, no LED will indicate the unit of measure of the process variable.

ELECTRICAL CONNECTION

Electrical connection

LABEL	MIN.	MAX.	U.M.	DEF.	LOAD 1 PROTECTION	
CA0	0	999	s	0	minimum delay between you turn the instrument ON and the first load 1 activation	
CA1	0	999	s	0	minimum delay between two load 1 activation in succession	
CA2	0	999	S	0	minimum delay between the load 1 gets OFF and the following activation	
CA3	0	1	_	0	load 1 status during the room probe alarm (0 = it will be forced OFF, 1 = it will be forced ON)	
CA4	0	1	_	0	fixed delay since the load 1 gets ON and OFF (1 = YES, for 3 s)	

LABEL	MIN.	MAX.	U.M.	DEF.	LOAD 2 PROTECTION	
Cb0	0	999	s	0	minimum delay between you turn the instrument ON and the first load 2 activation	
Cb1	0	999	s	0	minimum delay between two load 2 activation in succession	
Cb2	0	999	s	0	minimum delay between the load 2 gets OFF and the following activation	
Cb3	0	1	_	0	load 2 status during the room probe alarm (0 = it will be forced OFF, 1 = it will be forced ON)	
Cb4	0	1	_	0	fixed delay since the load 2 gets ON and OFF (1 = YES, for 3 s)	

LABEL	MIN.	MAX.	U.M.	DEF.	FIRST ALARM	
AA0	0.1	999	%r.H./bar ⁽⁸⁾	0.1	hysteresis (differential, it is relative to AA1, it is important if AA4 \neq 1)	
AA1	-99	999	%r.H./bar ⁽⁸⁾	0.0	first process variable alarm threshold (it is important if AA4 ≠ 1); look at AA4 as well	
AA3	0	999	min	0	first process variable alarm exclusion time since you turn the instrument ON (it is important if	
					AA4 ≠ 1)	
AA4	1	7	_	1	kind of process variable alarm (1 = it will never be activated, 2 = absolute lower proces	
					variable alarm, 3 = absolute upper process variable alarm, 4 = lower process variable alarm	
					relative to the first working setpoint, 5 = upper process variable alarm relative to the first	
					vorking setpoint, 6 = lower process variable alarm relative to the first working setpoint with	
					automatic calculation and enabling, 7 = upper process variable alarm relative to the first	
					working setpoint with automatic calculation and enabling)	

LABEL	MIN.	MAX.	U.M.	DEF.	SECOND ALARM	
Ab0	0.1	999	%r.H./bar ⁽⁸⁾	0.1	hysteresis (differential, it is relative to Ab1, it is important if Ab4 ≠ 1)	
Ab1	-99	999	%r.H./bar ⁽⁸⁾	0.0	second process variable alarm threshold (it is important if Ab4 ≠ 1); look at Ab4 as well	
Ab3	0	999	min	0	second process variable alarm exclusion time since you turn the instrument ON (it is important	
					if Ab4 ≠ 1)	
Ab4	1	7	_	1	kind of process variable alarm (1 = it will never be activated, 2 = absolute lower process	
					variable alarm, 3 = absolute upper process variable alarm, 4 = lower process variable alarm	
					relative to the first working setpoint, 5 = upper process variable alarm relative to the first	
					working setpoint, 6 = lower process variable alarm relative to the first working setpoint with	
					automatic calculation and enabling, 7 = upper process variable alarm relative to the first	
					working setpoint with automatic calculation and enabling)	

-	SAL	the process variable is	test the process vari-	• if the parameter /9
S	aturation	outside the limit you	able close to the probe	has value 1, the in-
	of the	have set with the pa-	(look at the parameters	strument will work
	display	rameter rA7	/3, /9, /r and rA7)	as if the process vari-
				able were always
				the value you have
				set with the param-
				eter rA7
				• if the parameter /9
				has value 3 or 4, the
				instrument will not
				consider process
				variable values
				above the one you
				have set with the
				parameter /7
	process	the process variable is	test the process vari-	• if the parameter /9
	vari-	outside the limit you	able close to the probe	has value 1, the in-
	able/	have set with the pa-	(look at the parameters	strument will work
	first	rameter rA6 or rA7	/9, /r, rA6 and rA7)	as if the process vari-
v	working			able were always
s	etpoint			the value you have
	value			set with the param-
	process			eter rA6 or rA7
	variable			• if the parameter /9
	out of			has value 3 or 4, the
	scale			instrument will not
				consider process
				variable values be-
				low the one you
				have set with the
				parameter /6 and
ı				above the one you
				have set with the
· -				parameter /7

The instrument shows the indications above alternated with the process variable, ex
cept the indications "E2", "E0" and "SAt" (they flash).

7 TECHNICAL DATA

7.1 Technical data

Box: self-extinguishing grey.

Size: $75 \times 33.5 \times 81$ mm (2.95 x 1.31 x 3.18 in) the model with extractable terminal blocks (standard model), $75 \times 33.5 \times 62$ mm (2.95 x 1.31 x 2.44 in) the model with screw terminal blocks (by request).

Installation: panel mounting, panel cut out 71 x 29 mm (2.79 x 1.14 in), with click brackets (they are supplied by the builder) or screw brackets (by request).

Frontal protection: IP 65.

Connections: extractable terminal blocks with pitch 5 mm (0.19 in, standard model) for cables up to 2.5 mm² (0.38 sq in, power supply, input and outputs) or screw terminal blocks with pitch 5 mm (0.19 in, by request) for cables up to 2.5 mm² (0.38 sq in, power supply, input and outputs), 5 poles single line male connector with pitch 2.5 mm (0.09 in, serial port).

Ambient temperature: from 0 to 55 $^{\circ}$ C (32 to 131 $^{\circ}$ F, 10 ... 90% of relative humidity without condensate).

Power supply: 230 Vac, 50/60 Hz, 1.5 VA (standard model) or 115 Vac, 50/60 Hz, 1.5 VA (by request).

Measure inputs: 1 (room probe) for 0-20 or 4-20 mA current transducers.

At terminal 6 there are 12 V you can use in order to supply the transducer.

Working range: configurable (it depends on the range of the transducer).

Setpoint range: from -99 to 999 %r.H./bar.

Resolution: 0.1 or 1 %r.H./bar.

Display: one red LED 3-digit display 13.2 mm (0.51 in) high, output status indicators, process variable unit of measure indicators.

Outputs: 2 relays: one 8 A @ 250 Vac relay for load 1 control (NO contact) and one 8 A @ 250 Vac relay for load 2 control (change-over contact).

Serial port: TTL with EVCOBUS communication protocol (for the configurer/cloner system CLONE and supervision system RICS).

WORKING SETPOINT AND CONFIGURATION PARAMETERS

8.1 Working setpoint

LABEL	MIN.	MAX.	U.M.	DEF.	WORKING SETPOINT
	rA1	rA2	%r.H./bar ⁽⁸⁾	0.0	first working setpoint
	rb1	rb2	%r.H./bar ⁽⁸⁾	0.0	second working setpoint ⁽⁹⁾

8.2 First level parameters

LABEL N	MIN.	MAX.	U.M.	DEF.	PASSWORD
PA -	-90	100	_	0	password

LABEL	MIN.	MAX.	U.M.	DEF.	MEASURE INPUTS
/1	-25	25.0	%r.H./bar ⁽⁸⁾	0.0	room probe calibration

LABEL	MIN.	MAX.	U.M.	DEF.	FIRST REGULATOR
rA0	-99	99.9	%r.H./bar ⁽⁸⁾	-0.2	hysteresis (differential, it is relative to the first working setpoint); look at rA4 as well [10] [11]

LABEL	MIN.	MAX.	U.M.	DEF.	SECOND REGULATOR
rb0	-99	99.9	%r.H./bar ⁽⁸⁾	-0.2	hysteresis (differential, it is relative to the second working setpoint); look at rb4 as well (9) (12)

8.3 Second level parameters

LAREL MINE MAY LLAM DEE MEASURE INDUTS

LABEL	MIN.	MAX.	U.M.	DEF.	KIND OF REGULATOR
-/0	1	3		2	kind of regulator (1 = the first working setpoint is absolute, the second one is relative to the
					first, 2 = two absolute working setpoint, 3 = neutral zone) (13)

LABEL	MIN.	MAX.	U.M.	DEF.	MEASURE INPUTS
/0	30	31	_	30	kind of probe (30 = 4-20 mA, 31 = 0-20 mA)
/1	-25	25.0	%r.H./bar ⁽⁸⁾	0.0	room probe calibration
/2	0	6	_	3	probe reading speed (0 = fast,, 6 = slow)
/3	0	1	_	0	indication "SAt" flashing on the display during the saturation of the display (it is important if
					$/9 \neq 0; 1 = YES$ (14)
/5	0	1	_	1	process variable resolution (0 = 1 %r.H./bar, 1 = 0.1 %r.H./bar)
/6	-99	999	points	(15)	minimum value of the range of the transducer
/7	-99	999	points	(15)	maximum value of the range of the transducer
/9	0	4	_	0	display mode (0 = during the normal operation the instrument shows the process variable,
					1 = during the normal operation the instrument shows the process variable, as soon as the
					process variable falls below the threshold you have set with the parameter rA6 or rises above
					the threshold you have set with the parameter rA7 the instrument will show the value of the
					threshold flashing and the instrument will work as if the process variable were always the
					value you have set with the parameter rA6 or with the parameter rA7, $2 = during$ the normal
	I	I	l		

operation the instrument shows the process variable, as soon as the process variable falls below the threshold you have set with the parameter rA6 or rises above the threshold you have set with the parameter rA7 the instrument will show the value of the threshold flashing, 3 = during the normal operation the instrument shows the first working setpoint value, as soon as the process variable falls below the threshold you have set with the parameter rA6 or rises above the threshold you have set with the parameter rA7 the instrument will show the first working setpoint value flashing, the instrument will not consider process variable values below the one you have set with the parameter /6 and above the one you have set with the parameter /7, 4 = during the normal operation the instrument shows the first working setpoint value, as soon as the process variable falls below the threshold you have set with the parameter rA6 or rises above the threshold you have set with the parameter rA7 the instrument will show the process variable flashing, the instrument will not consider process variable values below the one you have set with the parameter /6 and above the one you have set with the parameter /7) (16) 0.0 25.0 %r.H./bar⁽⁸⁾ 0.0 minimum immediate change of the process variable in order that it can immediately be considered by the instrument (0.0 = the funcion will not be enabled) (17) process variable unit of measure (0 = bar, 1 = %r.H., 2 = dimensionless) (18) kind of process variable value the instrument freezes the display (kind of rA6 and rA7, it is important if $/9 \neq 0$; 0 = absolute, 1 = relative to the first working setpoint) (14)

/b

/d

LABEL	MIN.	MAX.	U.M.	DEF.	FIRST REGULATOR
rA0	-99	99.9	%r.H./bar ⁽⁸⁾	-0.2	hysteresis (differential, it is relative to the first working setpoint); look at rA4 as well [10] [11]
rA1	-99	rA2	%r.H./bar ⁽⁸⁾	(15)	minimum value you can assign to the first working setpoint
rA2	rA1	999	%r.H./bar ⁽⁸⁾	(15)	maximum value you can assign to the first working setpoint
rA3	0	1	_	0	direct or reverse action (0 = direct action)
rA4	0	1	_	0	kind of hysteresis (0 = asymmetrical, 1 = symmetrical)
rA5	0	1	_	0	first working setpoint modification lock-out (1 = YES)
rA6	-99	rA7	%r.H./bar ⁽⁸⁾	0.0	lower process variable value the instrument freezes the display (it is important if $/9 \neq 0$); look
					at /r as well
rA7	rA6	999	%r.H./bar ⁽⁸⁾	100	upper process variable value the instrument freezes the display (it is important if $/9 \neq 0$); look
					at /r as well

LABEL	MIN.	MAX.	U.M.	DEF.	SECOND REGULATOR
rb0	-99	99.9	%r.H./bar ⁽⁸⁾	-0.2	hysteresis (differential, it is relative to the second working setpoint); look at rb4 as well $^{[9]}$ $^{[12]}$
rb1	-99	rb2	%r.H./bar ⁽⁸⁾	(15)	minimum value you can assign to the second working setpoint (9)
rb2	rb1	999	%r.H./bar ⁽⁸⁾	(15)	maximum value you can assign to the second working setpoint ⁽⁹⁾
rb3	0	1	_	1	direct or reverse action (0 = direct action) (9)
rb4	0	1	_	0	kind of hysteresis (0 = asymmetrical, 1 = symmetrical) (9)
rb5	0	1	_	0	second working setpoint modification lock-out (1 = YES) (9)