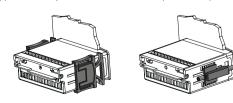


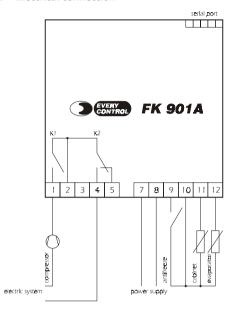

#### PREPARATIONS


#### 1.1 How to install the instrument

Panel mounting, panel cut out  $71 \times 29 \text{ mm}$  (2.79 x 1.14 in), with click brackets (they are supplied by the builder) or screw brackets (by request).



(1) maximum depth with screw terminal blocks (by request)


(2) maximum depth with extractable terminal blocks (standard model).



installation with click brackets (on the left-hand side, they are supplied by the builder)

and screw brackets (on the right-hand side, by request); if you are using screw brackets, you have to moderate the clamping torque, in order not to damage the box and screw brackets.

#### 1.2 Electrical connection



Relay K2 is normally activated.

## 2 OPERATION

### 2.1 Preliminary information

During the normal operation the instrument shows the cabinet temperature.

#### 2.2 How to silence the buzzer

If you have to silence the buzzer:

■ press 💉

### 2.3 How to exclude/restore the alarms

If you have to exclude/restore the alarms (3):

■ press 💉

for 2 s

Every time a lack of power supply takes place, as soon as the power supply will recover the alarms will automatically be recovered.

(3) except the corrupted memory data alarm, the cabinet probe alarm and the evaporator probe alarm.

## 2.4 Antifreeze function

The activation of the antifreeze input gives the activation of the function (if the input is active, the K2 will work in accordance

with F1 and F2; unless the input is active, relay K2 will be forced ON).

#### 3 **WORKING SETPOINT**

## How to set the working setpoint

If you have to modify the working setpoint value:

set and  $\uparrow$  or  $\downarrow$  (4)

(4) you can set the working setpoint between the limits you have set with the parameters r1 and r2.

#### **CONFIGURATION PARAMETERS**

## 4.1 How to set the configuration parameters

Configuration parameters are arranged on two levels.

If you have to gain access the first level:

press

♠ and ♠

for 4 s : the instrument

will show PR

If you have to select a parameter:



If you have to modify the value of the parameter:



If you have to gain access the second level:

gain access the first level

♠ or ♠ press

for selecting 🏳 🦰

press press

set and ♠ or ♠ for setting " -19 " for 4 s : the instrument

will show ႕ 🛭

If you have to quit the procedure:



for 4 s or do not operate for about 60 s.

## SIGNALS

# 5.1 Signals

| LED | MEANING                                                                     |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| *   | Relay K1 LED                                                                |  |  |  |  |  |  |  |
|     | if it is lighted, relay K1 will be ON                                       |  |  |  |  |  |  |  |
|     | if it flashes, a relay K1 delay will be running (look at the parameters C0, |  |  |  |  |  |  |  |
|     | C1 and C2)                                                                  |  |  |  |  |  |  |  |
| J.  | Antifreeze LED                                                              |  |  |  |  |  |  |  |
|     | if it is lighted, the antifreeze function will be activated                 |  |  |  |  |  |  |  |
| V   | Alarms exclusion LED                                                        |  |  |  |  |  |  |  |
|     | if it is lighted, the alarms will not be excluded                           |  |  |  |  |  |  |  |
|     | if it is OFF, the alarms will be excluded                                   |  |  |  |  |  |  |  |

#### **ALARMS** 6

#### 61 Alarms

| CODE      | REASONS                 | REMEDIES                | EFFECTS                                   |
|-----------|-------------------------|-------------------------|-------------------------------------------|
| E 2       | there is the corruption | switch off the power    | • you can not gain                        |
| corrupted | of the configuration    | supply of the instru-   | access the setting                        |
| memory    | data of the memory of   | ment: unless the alarm  | procedures                                |
| data      | the instrument          | disappears, you will    | ■ all outputs will be                     |
|           |                         | have to change the      | forced OFF                                |
|           |                         | instrument              |                                           |
| E 0       | • the kind of cabinet   | ■ look at the param-    | relay K1 will work in                     |
| cabinet   | probe you have con-     | eter /0                 | accordance with the                       |
| probe     | nected is not right     | • test the integrity of | parameters C5 and C6                      |
| alarm     | • the cabinet probe     | the probe               |                                           |
|           | plays up                | • test the instrument-  |                                           |
|           | • the connection in-    | probe connection        |                                           |
|           | strument-cabinet        | • test the temperature  |                                           |
|           | probe is wrong          | close to the probe (it  |                                           |
|           | • the cabinet tempera-  | has to be between       |                                           |
|           | ture is outside the     | the limits allowed by   |                                           |
|           | limits allowed by the   | the working range)      |                                           |
|           | working range of        |                         |                                           |
|           | the instrument          |                         |                                           |
| E I       | • the kind of evapora-  | • look at the param-    | • if the antifreeze                       |
| evapora-  | tor probe you have      | eter /0                 | function is acti                          |
| tor probe | connected is not        | • test the integrity of | vated, relay K2 wil                       |
| alarm     | right                   | the probe               | work in accordance                        |
|           | • the evaporator        | • test the instrument-  | with relay K1                             |
|           | probe plays up          | probe connection        | <ul> <li>unless the antifreeze</li> </ul> |
|           | • the connection in-    | • test the temperature  | function is acti                          |
|           | strument-evaporator     | close to the probe (it  | vated, relay K2 wil                       |
|           | probe is wrong          | has to be between       | be forced ON                              |
|           | • the evaporator tem-   | the limits allowed by   |                                           |
|           | perature is outside     | the working range)      |                                           |
|           | the limits allowed by   |                         |                                           |
|           | the working range       |                         |                                           |
|           | of the instrument       |                         |                                           |

| cabinet    | the cabinet tempera-      | test the temperature    | no effects |
|------------|---------------------------|-------------------------|------------|
| tem-       | ture is outside the limit | close to the probe      |            |
| perature   | you have set with the     | (look at the parameters |            |
| lower or   | parameter A1 or A2        | A0, A1 and A2)          |            |
| upper      |                           |                         |            |
| tempera-   |                           |                         |            |
| ture alarm |                           |                         |            |
|            |                           |                         |            |

The instrument shows the indications above flashing and the buzzer utters an intermittent beep.

#### 7 TECHNICAL DATA

#### 7.1 Technical data

Box: self-extinguishing grey.

**Size:**  $75 \times 33.5 \times 81$  mm (2.95 x 1.31 x 3.18 in) the model with extractable terminal blocks (standard model),  $75 \times 33.5 \times 62$  mm (2.95 x 1.31 x 2.44 in) the model with screw terminal blocks (by request).

**Installation:** panel mounting, panel cut out 71  $\times$  29 mm (2.79  $\times$  1.14 in), with click brackets (they are supplied by the builder) or screw brackets (by request).

Frontal protection: IP 65.

Connections: extractable terminal blocks with pitch 5 mm (0.19 in, standard model) for cables up to 2.5 mm<sup>2</sup> (0.38 sq in, power supply, inputs and outputs) or screw terminal blocks with pitch 5 mm (0.19 in, by request) for cables up to 2.5 mm<sup>2</sup> (0.38 sq in, power supply, inputs and outputs), 5 poles single line male connector with pitch 2.5 mm (0.09 in, serial port).

Ambient temperature: from 0 to 55 °C (32 to 131 °F, 10 ... 90% of relative humidity without condensate).

Power supply: 12 Vac/dc, 50/60 Hz, 1.5 VA.

Alarm buzzer: included.

Measure Inputs: 2 (cabinet and evaporator probe) for PTC or NTC probes.

**Digital inputs:** I for antifreeze function (NO contact) without voltage (it works with 5 mA).

Working range: from -50 to 99  $^{\circ}$ C (-58 to 210  $^{\circ}$ F) for PTC probe, from -40 to 99  $^{\circ}$ C (-40 to 210  $^{\circ}$ F) for NTC probe.

Setpoint range: from -55 to 99  $^{\circ}\text{C}.$ 

ີ Resolution: 1 °⊂.

Display: one red LED 3-digit display 13.2 mm (0.51 in) high, relay K1 status indicator,

programming status indicators.

Outputs: 2 relays: one 10 A @ 250 Vac relay for one ½ HP @ 230 Vac compressor control (NO contact) and one 8 A @ 250 Vac relay for antifreeze function control (change-over contact).

**Serial port:** TTL with EVCOBUS communication protocol (for the configurer/cloner system CLONE and supervision system RICS).

# WORKING SETPOINT AND CONFIGURATION PARAMETERS

## 8.1 Working setpoint

| LABEL | MIN. | MAX. | U.M. | DEF. | WORKING SETPOINT |
|-------|------|------|------|------|------------------|
|       | r1   | r2   | °C   | -20  | working setpoint |

## 8.2 First level parameters

| ı | ABEL | MIN. | MAX. | U.M. | DEF. | PASSWORD |
|---|------|------|------|------|------|----------|
| Ī | PA   | -55  | 99   | _    | 0    | password |

| LABEL | MIN. | MAX. | U.M. | DEF. | MEASURE INPUTS                                                                       |
|-------|------|------|------|------|--------------------------------------------------------------------------------------|
| /1    | -99  | 99   | °C   | 0    | cabinet probe calibration (you have to set eight points for adjusting one degree)    |
| /6    | -99  | 99   | °C   | 0    | evaporator probe calibration (you have to set eight points for adjusting one degree) |

| LABEL | MIN. | MAX. | U.M. | DEF. | REGULATOR                                                         |
|-------|------|------|------|------|-------------------------------------------------------------------|
| r0    | 1    | 15   | °C   | 3    | hysteresis (differential, it is relative to the working setpoint) |

| LABEL | MIN. | MAX. | U.M. | DEF. | EVAPORATOR                     |
|-------|------|------|------|------|--------------------------------|
| dA    | _    | _    | °C   | _    | evaporator temperature showing |

| LABEL | MIN. | MAX. | U.M. | DEF. | ALARMS                                                                                            |
|-------|------|------|------|------|---------------------------------------------------------------------------------------------------|
| A1    | -55  | 99   | °C   | 2    | lower temperature alarm threshold (it is relative to the working setpoint, $0 = it$ will never be |
|       |      |      |      |      | activated)                                                                                        |

## 8.3 Second level parameters

| LABEL | MIN. | MAX. | U.M. | DEF. | MEASURE INPUTS                                                                       |
|-------|------|------|------|------|--------------------------------------------------------------------------------------|
| /0    | 1    | 4    | _    | 1    | kind of probe (1 = PTC, 2 = reserved, 3 = NTC, 4 = reserved)                         |
| /1    | -99  | 99   | °C   | 0    | cabinet probe calibration (you have to set eight points for adjusting one degree)    |
| /6    | -99  | 99   | °C   | 0    | evaporator probe calibration (you have to set eight points for adjusting one degree) |

| LABEL | MIN. | MAX. | U.M. | DEF. | REGULATOR                                                         |
|-------|------|------|------|------|-------------------------------------------------------------------|
| r0    | 1    | 15   | °C   | 3    | hysteresis (differential, it is relative to the working setpoint) |
| r1    | -55  | r2   | °C   | -50  | minimum value you can assign to the working setpoint              |
| r2    | r1   | 99   | °C   | 50   | maximum value you can assign to the working setpoint              |

| LABEL | MIN. | MAX. | U.M. | DEF. | RELAY K1 PROTECTION (5)                                                         |
|-------|------|------|------|------|---------------------------------------------------------------------------------|
| C0    | 0    | 240  | min  | 0    | minimum delay between you turn the instrument ON and the first relay activation |
| C1    | 0    | 240  | min  | 0    | minimum delay between two relay activation in succession                        |
| C2    | 0    | 240  | min  | 0    | minimum delay between the relay gets OFF and the following activation           |
| C5    | 1    | 240  | min  | 1    | cycle time for the relay activation during the cabinet probe alarm              |

| C6    | 0    | 100  | %    | 100  | percentage of C5 the relay is ON during the cabinet probe failure |
|-------|------|------|------|------|-------------------------------------------------------------------|
|       |      |      |      |      |                                                                   |
| LABEL | MIN. | MAX. | U.M. | DEF. | EVAPORATOR                                                        |
| dA    | _    | _    | °C   |      | evaporator temperature showing                                    |

| LABEL | MIN. | MAX. | U.M. | DEF. | ALARMS                                                                                           |
|-------|------|------|------|------|--------------------------------------------------------------------------------------------------|
| A0    | 1    | 15   | °C   | 2    | hysteresis (differential, it is relative to A1 and A2, it is important if A1 and/or A2 $\neq$ 0) |
| A1    | -55  | 99   | °C   | 2    | lower temperature alarm threshold (it is relative to the working setpoint, 0 = it will never be  |
|       |      |      |      |      | activated)                                                                                       |
| A2    | 0    | 120  | °C   | 120  | upper temperature alarm threshold (it is relative to the working setpoint, 0 = it will never be  |
|       |      |      |      |      | activated)                                                                                       |
| A3    | 0    | 240  | min  | 0    | temperature alarm exclusion time since you turn the instrument ON (it is important if A1         |
|       |      |      |      |      | and/or A2 ≠ 0)                                                                                   |
| A6    | 0    | 240  | min  | 0    | temperature alarm exclusion time (it is important if A1 and/or A2 $\neq$ 0) (6)                  |

| LABEL | MIN. | MAX. | U.M. | DEF. | ANTIFREEZE                                                                                               |
|-------|------|------|------|------|----------------------------------------------------------------------------------------------------------|
| F1    | -55  | 99   | °C   | -15  | temperature relay K2 gets OFF (the contact switches on terminal 5, evaporator temperature,               |
|       |      |      |      |      | it is important if the antifreeze function is activated)                                                 |
| F2    | 1    | 15   | °C   | 2    | hysteresis (differential, it is relative to F1, it is important if the antifreeze function is activated) |

| LABEL | MIN. | MAX. | U.M. | DEF. | serial network (evcobus)                                                   |
|-------|------|------|------|------|----------------------------------------------------------------------------|
| L1    | 1    | 15   | _    | 1    | instrument address                                                         |
| L2    | 0    | 7    | -    | 0    | instrument group                                                           |
| L4    | 0    | 3    | _    | 1    | baud rate (0 = 1,200 baud, 1 = 2,400 baud, 2 = 4,800 baud, 3 = 9,600 baud) |

<sup>(5)</sup> relay K1 gets ON and OFF with a delay of 3 s

<sup>(6)</sup> if the temperature alarm does not disappear at the end of the time you have set with the parameter A3, it will further be excluded for the time you have set with the parameter A6.