EVCD

EveryControlGroup

UNI-PRO

DEVELOPMENT ENVIRONMENT FOR
PROGRAMMABLE CONTROLLERS

uNI®
PRO

INTRODUCTION MANUAL TO THE
C PROGRAM LANGUAGE

CODE 114UPROCLE22

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

Important Notice

This Instruction Manual should be read carefulljobe use, and all warnings should be observedMharual should

then be kept for future reference.

Page 2

Summary
SUIMIMIAIY ettt ettt e emm et e ettt e e e et s e et et e e et e b e e e e aaae e e enet e e e ee b e e e e ea e e e eea e eeebaneeennneees 3
1. Introduction to the C program lanNQUAGJEccccciiiiiiiiiiiiiiiiiiiiiaee e e e e e e e e eeeeeee e e e eeeeeeeeaeeees 5
P = T 1] (o @0 o =T o S PSRRS 6
N R B - 1 v W 1Y/ 01T U RRPPTPTT 6
2.1.1 Simple Data Types EXpected DY C ..ot e 6
2.1.2 Simple Data Types Expected by UNI-PROcuuciiiiiiiiieeeeii e 7
2.1.3 SErUCIUrEd Data TYPES .. uuuiiiie e e e e e e e e et s e e e e e e e e e e e e e e e e e eaaaaa s s e e e e e e eaaees 9
2.2 Variable DeCIarationS.............uuuuuuiiim et e e e aa e e e e e e e e e e e e eeenaaene 12
2.3 ENd-0f-INStruCtion OPEIAtOr..........ceee e e st e e e e e e e e e e e et ettt s e e e e eeeee e e e e e e aaeaeeeeees 13
2.4 INSLIUCHON BIOCKSviiiiiiiiiiee e ee e e e es 13
P T 0 1= o= (01 0 T 1= ATV o 13
2.6 FUNCHON CalISottt e e e e e e e e e e e e e e e e e e aaeeeeeeseeennnnns 14
2.7 SEAC VAriaDIESuviiiiiiiiiiiiiie e 14
T O o =T =1 (0] £ PP TP TUPPPRTTR 15
200 R I Yo o> |\ N S 18
T O 1 [0011] 0] (=T 0 =T o PP 18
ICTRC T AN [0 1= o = 1o VL= = 11 o] o S PPSRUSRN 18
3.4 Autoincrement and AULOAECIEMENTuuieeeeeeiiiiiiiiiar e e e e e e e e e eeeeeeeeeebennnaeeeenee 18
3.5 ArthmMEtiC OPEIratOrS........ccciiiiieieeeeees e s s e e s e e e e e e e e aaeeeeeeeseessnsnnnnnssssnnnnanaeeeeeas 20
3.6 Remainder of INteger DIVISION............... o eeeeeeeeeiinnnnaaaaseaaeaeeaaeeeeeeeesneneeeeeeessennnnns 20
ST BIESRITE e ——————— 20
Gt T Moo [[or=| W@ o1=] = (o] £ PP 21
3.9 LOQICAl Bit OPEIALOIS.....uiiiiieeeeeeeiie et ieeeeei s e e e e e e e e e e et e e et s s e e e e e e e aaaaaaaeaeaaaeeeeeennnnnes 23
G0 O I @] aTo (1 [e] g = I @] o1=] = (o T 25
G 00 I R XSS o [4 [T | @ =T = (o 25
3.12 Floating Point ArithmetiC OPEIatOrS......... o eeeerrrrruniiiaaaeeeeeeeeeeeeeeeeeeeesreeenneereennnen 26
N | 0151 (¥ o 1o o TP 27
4.1 Conditional Control INSTIUCIONS...........uueieeeiiiiiiiiiiiiiieaa e e e e e e e e eeeeee e eeeneeeeeeeeaaaae 27
4.1.1 IF...ELSE INSTIUCLION ...coiiiiiiiiiiiieeeeeee e e 27
o A Y/ (o o I [1 (o (o) o P 29
R O3 Vo [33
A.2.1 WRHIE CYCI@..eenee e e e e e e e e e e e e e e e e e e eeeeeaeenes 33
o To T VAV o 11 1= Yo = 35
G T o T O [PPSR 36
4.2.4 Usage of Cycles within UNI-PROooi et eeeee e 38
5. AITQY QN0 STIUCIUIESovvviiiiiiiies e s e s eeeeeees st e e e e e e e e et e e e e eee e e s e e e s eneeaasseaeaaeaaaeeaeeeeesesnnnnns 39
o T A Y 2= TP 39
5.1.1 Usage of Arrays Within UNI-PROciiiiiicccceii e 42
5.2 SHTUCKUIES ...ttt et e et e ettt e e et e ettt e e e e ee b b s aaeaaeeaeesna e aeaeennnnnnaeeeas 43
LIRS T O [o1 o] E PP TTTRPOPPP 43
ST S 11 o PP 43
G T O0 1 0] 141 0 PPN 44
I B 1= {1 = PSSR 45
7.1 The DEFINE Instruction in UNI-PRO.........uuieeiiiiiiiiiiiiie e 45
7.1.1 ProjJECt DEFINEcooiiiiiii oo cemeeee ettt e e e e e e e e e e eeeeenss e b e reneeeeeees 46
7.1.2 AIgorithm DEFINEcooiiiiiiiiii ettt e e e e e e as 46
S TR IR0 11 =1 1o TP a7
8.1 FUNCHON CallS ...ttt et et e e e e e ee e s bbbt e e e e e e e e e aaeeeas 47

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

8.2 ASSEITIONS ...ttt ettt e et e e e e a e bbbttt e e e e aaae s a7
S TR T 0T 0] (] = PP a7
o S)/ o = 0 0 (o 1V = 1 T YA a7
1S I U]\ o @ @] g] o] 1 =[] o SRS 47
0.1 UNUSEA COUEottt ettt ettt e e e e e e e e e e e e e s s s s s nrreeeeeeeeeeeeeeeeeaaannes a7
10, Standard LIDrary ...t e st ae e e e e e e e e e e e e eearearaea 48
10.1 Mathematical Functions: <math.h> ... 48
10.2 Strings FUNCLIONS: <SHNG.N> oo e e 49
10.3 Character Class Test: <CLYPE.N> ... ceeeeeecee e 49
10.4 Utility FuNctions: <StdliD. N> ..o 50
APPENDIX 1: Common Mistakes and Style Rules in.Co..........ccooiiiiiiiiiiiiiccee e 51
APPENDIX 2: Reserved Words of the C program [an@uag................eeieiiiiinieeeeeiiees e 52
APPENDIX 3: Documentation of Built-in FUNCHONS.ccc....cooiiiiiiiiiiiiiiiiiieeeeecee e 53
APPENDIX 4: GlOSSArY Of TEIMS ...uuuiiiii i ettt e e e e e et e e e eeseeeeeneeeeseseenna e eeeas 58
211 oo =T o] 0)Y/ S0 USSP 59

Page 4

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

1. Introduction to the C program language

The main features of the C program language awevagability of complete data structures, concise
instructions and high-level control, thus offerittge programmer great programming freedom,
enabling, in addition, access to hardware devices.

C is a compiled program language. It has been dgdinfor writing firmware applications, and
indeed both the generated executable code andesoade are relatively small in size, which is an
indispensable feature in order to remain within lihets of flash memories controlling electronic
devices.

It is a high-level language and therefore featwgsarticularly simple syntax, in which ordinary
English language words are utilised to describe manmds corresponding to tens of assembler
instructions or hundreds of instructions in macHaregguage (or code).

Among high-level languages, C is considered tohleddwest-level one. This is due to the fact that
it has few instructions and manages memory in Acieit way.

In virtue of the possibilities offered by its larage, a program written in C enables an exhaustive
memory management, while being especially efficibahks to its contained size.

UNI-PRO uses a third party C compiler designed donbedded systems running on 16-bit
microprocessors. There are some differences wighANSI-C language, specifically due to the
particular architecture and constraints of the eddld systems.

This manual is intended for engineers who use tipepoQramming language to develop application
programs for the C-PRO family using the UNI-PROa&lepment environment.

Page 5

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

2. Basic Concepts

This sections deals with the basic features ofAIN8I-C program language used in UNI-PRO.

2.1 Data Types

The data types expected by ANSI-C can be dividemltino categories:
- simple data
- structured data

There follows a description of the basic data etgubdy the ANSI-C program language and the
UNI-PRO development environment.

2.1.1 Simple Data Types Expected by C

The ANSI-C program language expects the followiatadypes:

Data Type | Sign | Repr. Min. Max. Notes
(In UNI-PRO, char is considered

char 8 bit -128 127 signed, but this generally depends on|the
compiler being used.)

unsigned |y Igpit |0 255

char

short int X |16 bit -32768 32767 Or jushort (*)

unsigned

16 bit 0 65535

short int

long int X 32 bit -2147483648| 2147483647 Or jlsig (*)

unsigned 32bit |0 4294967295

long int

float X 132 bit Single-precision floating-decimal data.

double X |64 bit Double-precision floating-decimal data.

NOTE (*): The generic-type integer data witht sign is differently represented according to
whether the processor is a 16 or 32-bit one, thezat is recommended to use explicitly tieort
notation per 16-bit data and tleng notation for 32-bit data.

Page 6

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

The following table shows the floating-point dabanhat and expressible value range:

Floating-point Data
Format

Expressible Value Range

float type The exponent part is a value betweeff and 2*2".
The fractional portion of the mantissa (the integertion is
normalized to 1) is binary and has 24-digit accyrac

double type The exponent part is a value betwe¥i’and 21°%

The fractional part of the mantissa (the integet ganormalized
to 1) is binary and has 53-digit accuracy.

long double type*

The exponent part is value betw&&*?and 21°%

The fractional part of the mantissa (the integet ganormalized
to 1) is binary and has 53-digit.

* long double type and double type declarationsracegnized as the same type.

2.1.2 Simple Data Types Expected by UNI-PRO

The simple data types adopted by UNI-PRO can hidefivinto two logical categories: the first one
is made up of all data types corresponding to tlodgbe ANSI-C program language; the second
category is made up of the new, non-structured tyats inserted by the UNI-PRO environment.

The following summary table lists the data typeloibging to the first category, indicating for each

type:

- Sign : whether or not negative numbers may beesgmted;

- Repr. : the number of bits actually used by thsetof oject;

- Min. : the minimum value it can take on;

- Max. : the maximum value it can take on;

- Corr. ANSI C : the corresponding ANSI C datum.
Data Type Sign Repr. Min. Max. Corr. ANSI C
CJ BIT 1 bit 0 (FALSE) | 1 (TRUE) | (*
CJ_S_BYTE X 8 bit -128 127 Signed char
CJ BYTE 8 bit 0 255 Unsigned char
CJ_SHORT X 16 bit -32768 32767 Signed short
CJ_WORD 16 bit 0 65535 Unsigned short

: — .

CJ _LONG X 32 bit 2147483648 2147483647| Signed long
CJ_DWORD 32 bit 0 4294967295 Unsigned long

Page 7

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

(*) ANSI-C does not declarel@ool data type, as is the case with other program lagetygpes (e.g.
C++), but rather useshar with the indications “different from 0” for TRUEnd “equal to 0” for
FALSE.

On the above data, it is possible to carry oubpdirations allowed by ANSI C.

The data types not defined by the ANSI-C stand@dl YOID, CJ_LED, CJ_BUZZ, CJ_DATE,
CJ_TIME, CJ_DATETIME) introduced by the UNI-PRO @awnment require individual treatment.

CJ_VOID

The CJ _VOID data type is an innovative conceptroohiced by the UNI-PRO development
environment. It allows a considerable reductiorpuafject development time and a high degree of
flexibility.

With this new concept, it is possible to define thea types of generic objects (e.g. a Var or
algorithm inputs), by simply linking them to objsathose type has previously been defined.

For example, if a variable is added to a projdus, variable is given a default setting CJ_VOID. By
linking the variable to a digital input (defined kjefault as CJ_BIT), the variable type is
automatically switched to CJ_BIT.

CJ_LED and CJ_BUZZ

The CJ_LED and CJ_BUZZ data types are very sinillaey represent the possibile values that can
be taken on respectively by a LED or Buzzer obj€btse data types can take on values comprised
between 0 and 3, with the following corresponditaguses:

0 : Off
1 : On continuously

2 : On with low frequency

w

: On with high frequency
CJ _DATE

The CJ_DATE data type has been implemented for pilngpose of carrying out processing
involving dates. It represents the number of ses@ldpsed since midnight off January 2000 ad
is capable of representing dates up to 2068. Theotithis data type can prove helpful when, for
example, certain operations are to be controlletherbasis of predetermined dates.

When using this data type within algorithms, it mayove easier to use the structure
CJ_DATE_STRUCT.

CJ_TIME

The CJ_TIME data type has been implemented fopthpose of carrying out processing involving

hours. It can be very useful for managing applaatime bands of a regulator, or in many other
cases. It represents the number of seconds elapsazithe beginning of the day (00:00) and can
easily be converted into the CJ_TIME_STRUCT striectia the special conversion function.

Page 8

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

CJ_DATETIME

The CJ_DATETIME data type has been implementedafbsituations where it is necessary to
process together both dates and times. It repregart seconds elapsed since midnight 8n 1
January 2000 and is capable is representing 24&inds, which is equivalent to about 68 years.

This data type can be used directly within algonish or, in order to work more easily, it can be
converted into the CJ_DATETIME_STRUCT structurea \library functions (see section on
CJ_DATETIME_STRUCT).

Note: CJ_DATE, CJ_TIME and CJ_DATETIME data types areb82data plus sign and are
compatible in calculations with the CJ_LONG dataety

2.1.3 Structured Data Types

In addition to the simple data types already desd; the C program language enables the
definition of more complex types, by combining se¥éasic data types into one structure.

The UNI-PRO development environment features thplementation of structured data types
carrying multiple information. They are nothingora than C structures made up of a certain
number of elements, calléads, which are accessible via the following C-prededirsyntax:

structure.fieldname

Example:

CJ_ANALOG probe;
CJ_SHORT set;
if (probe.Error != 0)

if (probe.Value > set)

Structured data types and their meanings are agthlyzlow.

CJ_ANALOG

The CJ_ANALOG data type represents the status afrahog input. The structure is made up of
two fields:

- Short typeValue, which represents the value read by the probe;

- Byte typeError , which represents an error code. If this fieleeguial to zero there are no
probe errors; otherwise it takes on the followirdues:

1: the probe is short-circuited; the Value fieldasced to module 32766.
2: the probe is interrupted or missing; the Vale#dfis forced to module 32765.

3: the reference of the probe is broken; the Vékld is forced to module 32762.

Page 9

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

CJ_CMD

The CJ_CMD data type is a structure associated twélarrival of a command. It is made up of the
following fields:

- Boolean-typevalid, which represents the completion of the commartdicetion. If this
property takes on the TRUE value, this means tatcommand has been intercepted and
therefore it is possible to proceed with the chasetion; otherwise, no command has been
received.

- Byte typeNode which indicates the logical node of the controiending the command.
- Short typeParam, which represents the command parameter.
CJ BTN

The CJ_BTN data type is a structure associated avithction on a keyboard key, whether this is
pressed, pressed and held or released.

Its is made up of the following fields:

- Boolean-type Valid, which represents the completed action (pressirgdease or
pressing/holding) of the keyboard key. If it talas the TRUE value, this means that the
action indicated in the Btn object has been natjfherwise the action has not taken place.

- Byte typeNode which indicates the logical node where the keyadas been verified.

- Short type Param, which indicates the number of seconds of persigteof the
corresponding key.

CJ DATE_STRUCT

The CJ_DATE_STRUCT type can be very useful whemyoay out operations involving dates.
Starting from the CJ_DATE non-structured data types possible to fill the CJ_DATE_STRUCT
structure, utilizing the appropriate conversiondiion.

It is made up of the following fields:
- Byte typeDay, which indicates the days [1 to 31].

- Byte type Month, which indicates the month [1 = January, 2 = Fetyu... 12 =
December].

- Byte typeYear, which indicates the year’s last two digits, staytfrom the year 2000. For
example, if this field has a value of 12, this oades the year 2012.

CJ_TIME_STRUCT
The CJ_TIME_STRUCT data type can prove very usehgn carrying out operations with hours,

for example to manage time bands. Starting from G@deTIME non-structured data type, it is
possible to fill the CJ_TIME_STRUCT structure, izithg the appropriate conversion function.

Page 10

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE
It is made up of the following fields:
- Byte typeSec which indicates the seconds [0 to 59].
- Byte typeMin, which indicates the minutes [0 to 59].
- Byte typeHour, which indicates the hours [0 to 23].
CJ_DATE_TIME_STRUCT

The CJ_DATETIME_STRUCT data type is used in theveosion from CJ_DATETIME (which
represents a date/time, codified in seconds) inteasier format.

This structure is usually filled by the DateTimeTieSt() conversion function, whose C program
language syntax is as follows:

CJ_DATETIME_STRUCT DateTimeToStruct(CJ_DATETIME Value);
Its field descriptions are the following:
- Byte typeSec which indicates the seconds [0 to 59].
- Byte typeMin, which indicates the minutes [0 to 59].
- Byte typeHour, which indicates the hours [0 to 23].
- Byte typeDay, which indicates the days [1 to 31].

- Byte typeWeekDay, which indicates the day of the week [0 = Sunday,Monday, ... 6 =
Saturday].

- Byte type Month, which indicates the month [1 = January, 2 = Fetyu... 12 =
December].

- Byte typeYear, which indicates the year’s last two digits, staytfrom the year 2000. For
example, if this field has a value of 12, this cades the year 2012.

To reconvert the structure into the CJ_DATETIME dypuse the StructToDateTime function,
whose C program language syntax is as follows:

CJ_DATETIME StructToDateTime(CJ_DATETIME_STRUCT rtc);

Page 11

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

2.2 Variable Declarations

A variable is declared as follows:

var_type Name_of variables_separated_by_commas;

Example:

A variable can be pre-initialized using the assigmaoperator = .

Example:

Here we can see two examples of initializationapfiealent variables, not forgetting, however, that
the method used in the first example is the mdieiefit one.

Example 1:

Example 2:

It is possible to perform multiple assignmentsvited that the variables are of the same type.

Example:

Where the instruction a=b=c (with c=3) correspotwdand is more efficient than a=3, b=3 and c=3.

Page 12

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE
2.3 End-of-Instruction Operator

As can be seen from the above examples, everyatsin in C must end with a semi-colon (;).
Example:

short a = 0;

float b = 0;

2.4 Instruction Blocks

One or more instructions grouped together so &rto a set of instructions, which is treated as a
single unit by the compiler, constitutes an inginrcblock. The block starts with an open curly
bracket {” and ends with a closed curly brackgt.“The following is an example of an instruction
block:

if (c <3)
{
a = b+c;
d=c+32;
}

In this example, the instructions enclosed withimlhc brackets, which constitute the block, are
controlled by thef keyword, and are executed only if the condition3 is verified.

2.5 The Return Keyword

Thereturn keyword is used to define the point and valuexdtfeom a function (or algorithm). The
returned type must be consistent with the typengeffin the function prototype.

Thereturn statement without value is transformed into anvedentgoto statement.

The target is the end of the algorithm. Tileeurn statement with value is transformed into an
assignment of the value returned andgb® statement to the end of the algorithm.

In UNI-PRO, each algorithm has one output. This msghat the value of this output is passed by
means of theeturn statement.

In UNI-PRO, if the output is an array, theturn statement without value must be used.

Page 13

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

Example 1:

Return (a+b);

Example 2:

c = atb;

return;

If noreturn statement is used,raturn statement without value is automatically execufer
the last line of the algorithm.

2.6 Function Calls

To call a defined function, one must enter the fiomcname (remembering that C is a case-
sensitive program language, thus the name mustriteenvprecisely, including upper and lower-
case letters), and one must then indicate the waaoguments, enclosed within round brackets and
separated by commas.

If for example one wants to call a function defirsedfollows:

short max(short a, short b);

one must write:

short A = 2;
short B = 5;

short maxValue = max(A, B);

2.7 Static Variables

The use oftatic variables in the algorithms is allowed, but nato®mended, because they can
cause undesired results. If a static variablelisd@n more than one algorithm, all instanceshait t
static variable will use the same memory register.

Example:

If in an algorithm there is this code:

static int s=0;

St++;

return s;

and this algorithm is used three times in the itpjat the beginning the first will calculate 1eth
second 2 and the third 3, in the second cycleitbedigorithm will calculate 4, and so on.

Page 14

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

3. Operators

Like all program languages, C has a number of apesai.e. symbols representing certain
operations on the value of data; the latter is comgntermed operand.

Some C operators are exact equivalents of theintegparts in other program languages, while
others are peculiar to C. Before looking at theaimfeatures, however, it may be useful to clarify
the meaning of two conceptsrecedenceandassociativity.

When an operator acts on several operands or $@pations are defined within an expression,
these concepts become significantly importanthag €nable a correct interpretation the expression
itself, determining which operations must be carioeit before others. Let us take as an example
the following sum:

a=b+c; |

This expression contains two operators, i.e.: theaksign (assignment operator) and the plus sign
(sum operator). It is easy to understand how thigression is only meaningful if one first
calculates the sum of the values containda amdc, and only subsequently is the result assigned to
a. One can say the precedence of the assignmeratopes lower than that of the sum operator.

Let us now examine a series of assignments:

a=b=c=d; |

The C compiler executes this by assigning the vafug to c; then the value of c to b; and finally
the value of b to a. The result is that the valiid © assigned in cascade to the other variables.
practice, the expression has been evaluated frgimh to left, that is to say, the assignment operato
has a right-to-left associativity.

In other wordsprecedence(or priority) is referred to the order in which the compilealerates
operators, whereaassociativity concerns the order in which operators with the esg@miority are
evaluated (the order may not necessarily alwaysdoe right to left).

Round brackets can always be used to define pagspoessions which are to be evaluated before
the operators found outside the brackets. Furthexmo the presence of nested round brackets, the
applicable rule is that the first encountered doseacket is coupled to the last open bracket, and
that the first operations to be evaluated will als/ée the more internal ones. For example, the
following expression:

a=5*@+b/(c-2); |

is evaluated as follows: first the difference betwe and?2 is calculated, theb is divided by that
difference. The result is summeda@nd the value thus obtained is multiplied by 5e Pphoduct is
finally assigned t@. In the absence of brackets, the compiler wouleklected differently, namely:

a=5*a+b/c-2; |

is evaluated by summing the product afand 5 to the quotient ob divided byc; 2 is then
subtracted from the result, and the value thusiddais assigned ta. It is worth presenting the
entire set of C operators, by summarising in aetabéir rules of precedence and associativity; the
operators are listed in decreasing order of preuszle

Page 15

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

OPERATOR DESCRIPTION ASSOCIATIVITY
! Logical NOT Right-to-left

~ one’s complement

- unary minus (negation)

++ autoincrement
-- autodecrement
* multiplication Left-to-right
/ Division
% Remainder of integer
division
+ Left-to-right addition
- Subtraction
<< Left shift of bit Left-to-right
>> Right shift of bit
< Less than Left-to-right
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to Left-to-right
I= Different from (Not Equal
to)
& bit-AND Left-to-right
A bit-XOR Left-to-right
| bit-OR Left-to-right
&& Logical AND Left-to-right
I Logical OR Left-to-right
?: Conditional expression Right-to-left
=, etc. Assignment operatoright-to-left
(simple and compound)
, Comma (expressian.eft-to-right
separator)

Note: In case of sum or multiplication, the UNI-PRO qalar does not check for arithmetic
overflow.

Page 16

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

Example:

CJ_SHORT a = 1000, b = 1000;

CJ LONG c=a*b;

The multiplication is carried out usingt arithmetic, and the result may overflow or be tated
before being promoted and assigned tddhe left-hand side.

As is the case for any type of computer programmiinig the responsibility of the programmer to
write code that prevents unwanted or unintendedlteefom mathematical operations and memory
access operations.

Use an explicit cast on at least one of the operémdorce long arithmetic:

long int ¢ = (long int)a * b; |

or

long int ¢ = (long int)a * (long int)b; |

(both forms are equivalent).

Note: UNI-PRO compiler does not check for division bgra in case of division and remainder
operator.

Example:

CJ_SHORT a =1000, b = 0;

CJ LONG d=a/b;

The division is carried out giving an indeterminegsult value.

It is the responsibility of the programmer to witigde that prevents unwanted or unintended results
from mathematical operations and memory accessatpes.

Use an IF...ELSE test to determine that the divigimarand is non-zero:

If (b<>0)
CJ LONGd=a/b;

Else

CJ_Error_divide();

Page 17

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

3.1 Logical NOT

Logical NOT is represented by the exclamation m@aik). It enables the logical negation of a
comparison result, i.e. to turn it “upside downherefore, if for example:

[a>b) |

is true, then

I(a > b) |

will prove false.

3.2 One’s Complement

The one’s complement operator is represented bytilthe (~). The complement to one of a
number is obtained by inverting all bits makingtbp number, for example, with reference to data
expressed by a single byte, the one’s complemert &f 255, while that of 2 is 253. In fact,
representing the byte as an 8-bit string, in tret iase we pass from 00000000 to 11111111, while
in the second from 00000010 we obtain 11111101.

The one’s complement operator (@nary negation) must not be confused either with the logical
negation operator, as just described, or with thekaaic negation one, or unary minus (“*-", see
below), which are described above. In any casediffierence between the three is evident. The
first one turns “upside down” the single bits ofaue; the second renders null a non-null value and
vice versa; and the third inverts the sign of aigal.e. renders negative a positive value and vice

versa.

3.3 Algebraic Negation

The minus sign “ - ” can be used as an algebragatian, i.e. to express negative numbers, or, to be
more precise, to invert the sign of a value; irs ttése, it has a higher priority over all arithmeti
operators. Thus

la=-b*g; |

is evaluated by multiplying by the value ob with a changed sign. It should be noted that the
algebraic negation of a given value does not mathiéyvalue itself, but returns it with the opposite
sign and identical module; in the above example vidue ob is not modified.

3.4 Autoincrement and Autodecrement

The autoincrement and autodecrement operators adrsubtract, respectively, a unit to and from
the variable to which they are applied. The esgien

[5a |

increments by 1 the value af while

|- |

Page 18

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

decrements it by 1. It is very important to rememibat they can be used as prefixes or suffixes,
i.e. they can either precede or follow the variabbe which they are being applied. Their
significance remains unchanged (adding or subirgcti), but their priority level differs. In the
expression

a = ++b; |

a is assigned the value bf incremented by 1, because varidbles first incremented and then its
new value is assigned & unlike in

a = b++; |

where a is assigned the value d&f, and only subsequently is the latter increment&idilar
considerations also apply to the decrement operator

Again, in

if(@> ++b) |

the condition is evaluated after having incremetuedhereas in

if(@> b++) |

the condition is first evaluated, atiten b is incremented.

The difference between prefixed and suffixed omerdisappears when the autoincrement of the
variable is a parameter of a function call; witference to a line such as this:

functionName(parl,++a); |

it is often not possible to know priori whethera is incremented before passing its value to the
function or whether, on the contrary, the incremsrgubsequently effected. One could expect the
writing ++a to determine the increment before the call, wiatet would determine it after;
nevertheless, the C program language does notlisktab univocal rule. This means that the
individual compiler can proceed as deemed bests, Tinturn, means that there may be compilers
which fix a priori a univocal way to proceed, while others decide¢esxd case by case at the
compilation stage, for example on the basis of cop@gmisation options, in relation to speed,
dimensions and so forth. It is therefore imperatiee study very carefully the compiler’s
documentation, or, better still, to avoid the ridkany ambiguity, by dedicating to the variable’s
increment a separate instruction for that of thecfion call, not least in view of possible subseque
porting of the program to other compilers.

The operators "++" and "--" always modify the vabighe variable to which they are applied.

Page 19

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

3.5 Arithmetic Operators

The arithmetic operators of the C program langusrgehe symbols of addition “ + ", subtraction “

— 7, division “ / 7 and multiplication “ * ”. The ge of these operators can also appear rather
obvious; however, it is useful to emphasize thé flaat the normal rules of algebraic priority apply
to them, therefore, in the absence of bracketstiphahtion and division operations are carried out
before those of addition and subtraction. FormgXa, the following expression:

a=b+c*4-d/2; |

is calculated as:

a=b+(c*4)-(d/2); |

where the multiplication and the division have gtioover the rest.

3.6 Remainder of Integer Division

When carrying out a division between two integembers, C returns only the integer part of the
result. If there is a remainder, this is lost. Ewample, the following expression:

a=14/3; |

assigns a = 4;

If one wants to know the remainder of the divisione has to use the “ % " operator:

a=14 % 3; |

assigns a = 2, i.e. the remainder of the operatlarpractice, the “ % ” operator is complementary
to the “ / " operator, but can only be applied &dues belonging to the integer category.

3.7 Bit Shift

Even though it is normally classified among higheleprogram languages, C often shows its nature
of system-oriented program language; indeed, thedarators at its disposal are one of the features
which contribute to make it particular close to thachine. These operators enable intervention on
integer data, by considering as simple bit sequence

Two operators are particularly interesting, as teegble the relocation — or shifting — by a certain
number of positions to the right or left, of theésbof a given value: these are the so-caltiiedhift
operators. In particular, the left shift is represented bg t << ” symbol, the right shift by the “ >>

” symbol. Example:

a=1;

a <<= 2;

b=a>>1;

The reported code fragment assignsatihe value 4 and tb the value 2 (without modifying the
value ofa); indeed, number 1 in binary form is 00000001.

Page 20

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE
By relocating the bits to the left by two positipogsie obtains 00000100, which is, namely, 4.

The assignment operator can be made up of bit tywsrahere follows that the second line of code
modifies the value ad, assigning to it its own value relocated to tHelg two positions, while the
third line gives the result of the operatiorbinwithout modifying the value containedan

It must be noted that the shift operation rendeemamngless the first or last bits of the value

(depending on whether the relocation is to the deftight, respectively); those spaces are filled

with bits with an appropriate value. A shift tcetkeft never causes any problems, since the bits
which are left free are filled with a zero bit; ihe case of a shift to the right, things become
complicated.

If the data type on which the shift is performedvithout sign, or is positively signed, in this eas
too null bits are used as fillers. On the contr#rihe data type is negatively signed, then it thes
born in mind that its most significant bit — i.&etone at the extreme left — is used precisely to
express the sign. Some processors extend thei.ggtihey fill in the bits left free by the shiftitiv a

bit one, while others insert null bits anyhow. Téfere, depending on the calculator on which it is
performed, a left-shift operation as the followinge:

short sc;
sc=-1;// In bits itis 11111111

sc >>=4; [/ remains 11111111 with E.S.; becomes 00 001111 without E.S.

can result into a finadc value still equal t@ - 1, if the processor performs a sign extension (E. S
or equal to 15,if there is no sign extension. Thus, one needsdoged with caution, and to consult
the machine documentation, before risking any kihkypothesis.

3.8 Logical Operators

Logical test operators can be divided into two gates: those normally used in comparisons
between values; and those used to link the resiiltevo comparisons. The following is a brief
series of examples referring to the first group:

(a==b)// TRUE ifais EQUAL to b
(a!'=b) // TRUE if a is different from b

(a < b) // TRUE if a is strictly less than b
(a>b) // TRUE if a is strictly greater than b

(a<=Db) /[TRUE if a is less than or equal to b

(a>=Db) // TRUE if a is greater than or equal to b

The writing of the said operators and their meardpgear obvious, perhaps with the exception of
the equal operator “ == ”; in fact, having estaidéid that in the codification of programs
comparisons of equality are generally about hadf designments, the designers of the C program
language, have decided to distinguish the two apesaby doubling the writing of the second to
express the first one.

Page 21

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

It follows, therefore, that:

assigns t@ the value ob, whereas:

[@=D |

expresses a condition which is true if the two alales are the same. The different writing of the
two operators enables the writing of conditionshsas:

ifa = D) .. |

From has just been said, it appears obvious thwdt wuiting cannot mean “i& is equal td”; what
we have here is, in fact, simply a very succincy whsaying:

a=b;

if(a)

which, in turn, is the equivalent of:

a=b;

iftal=0) ...

That is to say, “assigh to a, and if the result (i.e. the new valuea)fis different from 0...”, given
that every time a condition is expressed withouseaond comparison term, the C program
language assumes that one wants to verify it ndityn

Let us now examine the second category of operaidrs logical operators normally used to link
the results of two or more comparisons are twoy #re the logical product (* && ”, or AND) and
the logical sum (* || 7, or OR).

(a<b && c ==d) // AND: true if both are TRUE

(a<b|l c==d)// OR: true if AT LEAST ONE is TR UE

It is possible to write rather complex conditiobst one must bear in mind the rules of priority and
associativity. For example, given that all operatof the first category have greater priority over
those of the second category, the following:

| (a<b&&c==d) |

is the equivalent of:

[((a<b)&& (c==d) |

In expressions where both “ && " and “ || ” appeane must remember that the first has priority
over the second; therefore:

|(@<b|lc==d&&d>e) |

Page 22

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

is the equivalent of:

| (@<b) [l ((c ==d) && (d < e))) |

We can deduce from all this — if nothing else -t thanany cases the use brackets, even where they
are not indispensable, is certainly useful, sirntcenproves considerably the legibility of code,
avoiding the risk of making insidious logical mists.

3.9 Logical Bit Operators

Logical bit operators enable the relating of twduea via a bit-by-bit comparison. Let us examine
the logical product operator, or bit-AND. When tbits are put in AND, the result is a null bit,
unless both bits have a value of 1. The tabletihtiss all possible cases with a logical product of
two bits, depending on the values which each ahtban take on.

The operation which consists in putting two valueAND is often referred to as “masking”, since
it has the effect of hiding selectively some of thts; in particular, it is the second value that i
conventionally termed “mask”. If the mask consaizero, in the result there will always be a zero
in that same position, whereas a 1 in the maslekethwe value of the original bit unchanged. Let us
suppose, for example, that we want to consider thay8 least significant bits of a 16-bit value:

unsigned short word,;
unsigned char byte;

word = 2350;

byte = word & OxFF;

The value 2350, as expressed in 16 bits, resu@®®®100100101110, while its hexadecimal OxFF
value is 0000000011111111. The logical product atan can be represented thus:

0000100100101110 &

0000000011111111 =

0000000000101110

and the result is 46. From this example, we catihéurdeduce that the AND on bit operator is the “
& ” character.

The difference from the logical AND operator apgets be subtler, even though this has the
different writing “&&”. The AND on bit acts precedy on the single bits of the two expressions,
while the logical AND links the logical values dfi¢ same (true or false). For example, the
following expression:

| (@>Db) &&c) |

returns a value which is different from Geifis greater thab and if, at the same time,is different
from O; whereas the expression:

| (@>b)&c) |

Page 23

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

returns a value different from Oafis greater thab and, at the same timejs an odd value. In fact,
a true expression returns 1, and all odd valueg llagir least significant bit at 1, therefore the
logical product has a bit at Xthe least significant one, thus different from @ly if both
conditions are true.

The OR on bit operator is used instead to calcwidiat is commonly known as the logical sum of
two values. When two bits are put in OR, the reisudlways 1, except in the case where both bits
are at 0. The behaviour of the logical sum operst@ummarised in the table. It should be noted
that the mask concept can also be validly appbe@R operations between two values, especially
when one wants to assign the value 1 to one or bits®f a variable. In fact, the presence ofa 1 i
the mask brings to 1 the corresponding resultviditereas a 0 in the mask leaves the bit of the
original value unchanged (this behaviour is exaitte/opposite of that of the “ & ” operator).

The OR operation on the bits of values 2350 and(E&%®) can be represented as follows:

0000100100101110 |

0000000011111111 =

0000100111111111

and it returns 2599. The symbol of the bit-OR ommaras “ | 7, and it should not be confused with

the logical OR operator “ || ”; apart from thisetl exist between these two operators differences i
meaning which are very similar to those mentionadier with reference to the AND on bit and

logical AND operators.

There is a third logical bit operator, the bit-XQiperator, also known as “exclusive OR”. Its
symbol is the circumflex accent “ * ”. An XOR optoa between two bits returns a 0 result when
the two bits have equal value (i.e. they are botr both 0), whereas it returns a 1 when the two
bits have opposite values (the first 1 and the rs@) or vice versa); the table highlights what has
been stated. From this we can deduce, therefaetha presence of a 1 within a mask used in XOR
inverts the corresponding bit of the original value

Brushing up once more the example of the value 238€ked with a 255, we have:

0000100100101110 7

0000000011111111 =

0000100111010001

The result is 2513.

Page 24

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

3.10 Conditional Operator

The conditional operator, sometimes also known essaty operator, since it works on three
operands, is represented by the “?:” symbol, amdbeacompared to a shortened form of the control
structure IF....ELSE.

Its general expression is:

| condition ? expression1 : expression2 |

This means: “If condition is true (i.e. its valu different from 0) return expressionl, otherwise
return expression2”.

For example, the following instruction:

| (x>0)?x:0; |

returns the value of x if x > 0; in all other caséseturns a value 0.

The conditional operator enables the writing of emoompact and efficient code, compared with
what can be achieved with the IF....ELSE structuligeinat the expense of the legibility of the
code.

3.11 Assignment Operator

The assignment operator is represented by the sggral’ = 7, and it assigns to the variable on its
left the result of the expression on its right. &ivhe intuitive nature of its meaning and usdgs, |
not worth dwelling on it any longer. Rather, it ugrth examining its usage combined with
arithmetic operators.

In all cases where there is an expression of thaxmng type:

la=a+bh; |

that is, where the variable to the left of the é®ign also appears in the expression on its riglt,
possible to use an abbreviated form which is eggedy “compounding” the assignment operator
with the equal and the expression operator. We th&nabout composite assignment operators, as
opposed to a simple assignment operator, i.e.dbaleign. As usual, an example is clearer than
any explanation; thus the above expression becomes:

[a+=b; |

When formalising the whole, an assignment of thiefong type:

| variable = variable operator expression |

can be written (but not necessarily) as follows:

| operator variable = expression |

Page 25

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

This is the complete list of all composite assignhaperators:

| +=; -=; *=: [=; Qo=; >>=; <<=; &=; = |=. |

They enable the creation of expressions which ne little cryptic, but are undoubtedly very
concise.

3.12 Floating Point Arithmetic Operators

UNI-PRO supports the following operators on varashdf the types float, double and long double:

Operator Description
-a Negation
a+b Sum

a-b Subtraction
a*b Multiplication
alb Division
a<bhb Relation
a<=b Relation
a>h Relation
a>=b Relation

UNI-PRO compiler supports type conversion to adifinteger types

UNI-PRO compiler does not check for arithmetic éasv in case of sum or multiplication.

Note The IEEE Standard for Binary Floating-Point Anthtic (IEEE 754 -1985) defines floating-
point computation.

This standard is allowed but not required by theSMS standard.

In the controller, the floating point operationg aone by the runtime library functions. Although
those functions operate according to ANSI/IEEES&IO85, they do not completely conform to the
standard. In particular, no interrupts are gendratel no status flag is set.

It is the responsibility of the programmer to witigde that prevents unwanted or unintended results
from mathematical operations and memory accessatpes.

Page 26

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

4. Instructions

Any program can be codified into a program langubgeaising only three control modes of the
processing flow: sequential execution, conditiaacution and cycles.

Sequential execution is the simplest of the thaad, is often not regarded as a proper control mode
at all; in fact, it is logical to expect that, ihet absence of any other specification, the next
instruction to be performed is the one that follaie current one in the codification.

The other two control structures require a clogan@nation.

4.1 Conditional Control Instructions

The C program language has at its disposal twerdifft instruments for conditioning the execution
of programs. It is worth having a careful look fzrn.

4.1.1 IF...ELSE Instruction

Conditional execution in its simplest form is spiecl using thdF keyword, which indicates to the
compiler that the next instruction must be execufethe condition, always specified within
brackets, is true. If the condition is not verifitlien the instruction is not executed and the
processing flow jumps to the next instruction. Thstruction to be executed upon verification of
the condition can be a single line of code, tert@ddy a semi-colon, or a block of lines of code,
each terminated by a semi-colon and all encloséaimeurly brackets. Example:

if(a == b)
function(a);

if(a ==c)

{
function(a);

a=c;

}

In the example code, if the value contained is equal to the value containedlnthe function is
recalled; otherwise, thieinction call (a) will not be executed, and processing will procesith the
next instruction, which is still an IF. This timié,a is equal to c, the block of instructions enclosed
within curly brackets will be executed, otherwisési skipped, and the program proceeds with the
first instruction which follows the closed curlydoket.

As a rule of thumb, a condition is expressed via tme logical operators of C, and is always
enclosed within round brackets.

Page 27

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

IF is completed by the keyworlLSE, which is used when one needs to define two plessib
alternatives; furthermore, several IF...ELSE strugsucan be nested, when it is necessary to
perform tests on multiple cascaded “levels”:

if(a == b)
/l ais greater than b
else
{
/lais less or equal to b
if(a < b)
Il ais strictly less than b
else

I ais strictly equal to b

}

In the presence of ELSE, if the condition is traely what is contained between IF and ELSE is
executed; otherwise, only the code that follows ELi&elf is executed. In other words, the
execution of the two blocks of code is alternative.

It is extremely important to remember that everySELif referenced by the compiler to the last IF
encountered; therefore, when IF...ELSE constructiares nested, one must pay attention to the
logical construction of alternatives.

Let us try to clarify this concept with an examglet us suppose that we want to codify in C the
following algorithm:if aisequal to b then check if ais greater than c. If this condition istrue too, a

is incremented. If instead the first of the two conditions is false, i.e. a is not equal to b, then c is
assigned the value of b. Let us now examine a coding hypothesis:

if(a == b)
if(a > c)
at++;

else

c=b;

The left-margin indents of the various lines highti good intentions: it is visually immediate to
link ELSE to the first IF. Pity that the compilehould be totally uninterested in indentations!
Indeed, it links ELSE to the second IF, namelyth®last encountered IF.

Page 28

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

Thus, it is necessary to find a remedy:

if(a == b)

if(@a > c)

The one we have just examined in one possibility.ifdroducing an “empty” ELSE, one can
achieve the aim, as this is linked to the last entered IF, i.e. the second one. When the compiler
encounters the second ELSE, the last and not yehpteted” IF, moving backwards within the
code, is the first of the two. It all tallies... Yibtere is a more elegant way.

if(a == b)
{
if(@a > c)

a++;

In this case, curly brackets clearly indicate t® tompiler which code portion is directly dependent
on the first IF, and there is no risk that ELSE nh&ylinked to the second one, given that this is
entirely enclosed within the block in curly brackeind therefore certainly “complete”. As can be
seen, with the exception of some peculiaritieshimgt separates the logic of IF in the C program
language from that of IFs (or equivalent keyworag&ilable in other program languages.

4.1.2 Switch Instruction

IF manages excellently those situations wherepWatig the evaluation of a condition, there appear
to be only two possible alternatives. However, whiggre are more than two alternatives, one is
forced to use several nested IF instructions, dmsl ¢an complicate considerably the logical

structure of the code, impairing its legibility.

When it is possible to express the condition t@b&uated with an expression returning an integer
number or a character, the C program languagesofferswitch instruction, which enables the
evaluation of any number of alternatives for theuheof said expression.

The value returned by the expression must be egert type, and type conversion is normally
performed automatically.

Page 29

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

The general form of this instruction is the follogi

The keywordscaseand default are labels which are arrived at on the basis afuation of the
expression.

There may be an arbitrary numbercages, whereaglefault must be unique. The flow starts at the
case whose constant value is equal to the retwralee of the switch expression, and proceeds until
it encounters an explicit interrupt instruction tetenined by the keywortireak. When no case
value is equal to the expression value, the defabél is reached.

Page 30

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

Let us immediately look at a practical example:

int rc; // Let us assume a return value
switch(input)
{
case 1:
rc = 33;
break;
case 2:
rc = 66;
break;
case 3:
rc = 100;
break;
default:
rc=0;
break;
}

The reported code fragment is referred to a vempk algorithm which, depending on theut
entry, sets anc value. It is best to examine this in greater deliashould first of all be noted that
the expression to be evaluated must be enclosddnwibund brackets. Furthermore, th&itch
body, i.e. the set of alternatives, is enclosecdhiwitcurly brackets. Every single alternative is
defined by thecase keyword, followed by an integer constant (varigbler non- constant
expressions are not admissible) or char, which tiin followed by a colon “ : ”. Everything that
follows the colon represents the code that willexecuted if the evaluated expression takes on
precisely the value of the constant found betwéerdaseand the colon, up to the first encountered
break instruction; the latter determines the exit frdme $witch, i.e. a jump to the first instruction
that follows the closed curly bracket. Tefault keyword, followed by the colon, introduces the
section of code to be executed, if the expressams ahot take on any of the values specified by the
differentcases.

Within the curly brackets, at least one conditiomstrbe specified: this means that shatch could
also be followed by a singleaseor by thedefault, and therefore there can be switches without
default or case. The default, however, if preseninique.

Page 31

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

It is perhaps superfluous to specify that there-e#mecessary — be more than dmeak, and that
they can depend on other conditions evaluated nvdlgase, e.g. via an IF. Furthermore, a case can
contain an entire switch, within which a third are; be nested, and so forth. The important thing is
not to lose the logical thread of controls. Example

In the above examples, case-dependent instructamkd are never enclosed in curly brackets. In
fact, the brackets are not necessary (whereasafey let us repeat this — to open and close a
switch); their presence, however, does not hurbni@ word, these brackets are optional.

Page 32

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

4.2 Cycles

The C program language also has at its disposalai®ns for cycle control; these instructions
make it possible to force iterations on code blawkgarying dimensions.

4.2.1 While Cycle

Using thewhile instruction, it is possible to define an iteratioycle until a given condition is
verified as true. Let us immediately look at anrapke:

while(a < b)
{
functionName(a);

++a;

}

The two lines enclosed within curly brackets widl bxecuted until tha variable — increment by
increment — becomes equallipat this point, the execution will proceed witle thrst instruction
that follows the closed curly bracket.

It is worth delving deeper into the algorithm, exaimg in greater detail what actually happens.
The first operation is to evaluate whetlagis less tharb (this condition must be expressed within
round brackets). If this is true, the function @hd autoincrement f are executed, to return then
to the comparison betweenandb; if the condition is true, the cycle is repeatetherwise the
operation proceeds — as already said above — vi#t @omes after the closed curly bracket.

From this, one can first of all deduce that ifte first test the condition is not true, the cyisl@ot
executed — not even once. Furthermore, it is imfispble that within the curly brackets something
happens to determine the necessary conditionsxiting the cycle; in this case, the subsequent
increments ofa sooner or later render false the condition fromicWwhthe entirewhile cycle
depends.

There is, however, another method for abandonioygcke in the presence of a given condition: this
is thebreak instruction. Example:

while(a < b)

{
function(a);
if(++a == 100)
break;

--C;

Page 33

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

In this examplea is incremented and then compared with the val@g E@qual to it, the cycle is
interrupted, otherwise it proceeds with the decrgnw c. It is also possible to exclude from

execution part of the cycle, forcing a return te tést:

In the last example abova,is compared witlt and is incremented. If, before the incremenis
less thart, the processing flow returns to the test ofwhele instruction; the responsibility of the
forced jump rests with theontinue instruction, which enables a new iteration to laetet from the
beginning. Otherwise, function(a) is called, anteav test is subsequently performed, with possible

exit from the cycle.

While cycles can be nested:

Inside the cycle for (a > b) there is a secondeyol (c < x). Already in the first iteration ofegh
“external” cycle, if the (c < x) condition is trueie enter into the “internal” cycle, which is eetir
processed (i.ec is incremented until it takes on a value equalXp before executing the next

Page 34

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

instruction of the external cycle. In practice, eafery iteration of the external cycle there is a
complete series of iterations in the internal cycle

It should be emphasised that dmgak or continue instructions present within the internal cycle
relate exclusively to this cycléreak would cause exiting from the internal cycle, whatntinue
would produce a return to test, still within théeimal cycle. Finally, we can also note that theley
for (c < x) is made up of a single instruction 4siffor this very reason that it was possible tatom
the curly brackets.

4.2.2 Do...While Cycle

Thedo...whilecycle is very similar tevhile-type cycles. Let us take a look at one:

do
{
if(a++ < c)
continue;
function(a);
while(c < x)
++C;
if(++a == 100)
break;
-C:
}

while(a < b);

It is not by chance that this example is the sam&as used earlier with reference to ttale
instruction; in fact, the two cycles are identicaevery way, with the exception of a single detail

In do...while type cycles, the test on condition is performethatend of the iteration, not at the
beginning, and this has two important consequences.

First of all, ado...while cycle is always executed at least once; in faet,grocessing flow has to
go through the cycle’s entire code block, befortigg to evaluate the condition for the first time.
If the condition is false, the cycle is not repeat@nd processing proceeds with the first instoncti

following while, but it remains obvious anyway that the cycle dlessady been completed once.

Secondly, theontinue instruction does not determine a jump backwards fdrwards. In fact, it
forces in any type of cycle a new condition cheokiyhile cycles, the condition is at the beginning
of the code block, therefore to reach it from aenmediate point within the latter, it is necesdary
jump backwards, whereas d@o...while cycles the test is found at the end of code ambvsously
reached with a jump forward.

Page 35

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

For all other aspects of the behaviourdaf...while cycles, especially thbreak instruction, the
same considerations apply as already made atiolé-type cycles.

The compiler generates an advisory if the assighmgerator is used as condition of a control flow
statement such as orwhile

Example:

If (a==Dh)

S++;

/I The s++ is executed only if a and b are equal.

If (a = b)

S++;

/I The value b is copied into a and s++ is always e xecuted.

4.2.3 For Cycle

Among C instructions for cycle contrdbr is undoubtedly the most versatile and efficidtr is
found in all — or nearly all — languages, but norehelse does it have the same power which it has
within C. Indeed, generally speakinghile-type cycles and their derivations are used irasibns
where it is impossible to knowa priori the exact number of iterations, wheréas— thanks to its
“starting point; limit; increment step” logic — Erticularly suited to those cases where the number
of cycles to be iterated can be determined at tiset.

In the Cfor, three-coordinate logic still applies, but, unlikenearly all other program languages,
they are reciprocally unbound and not necessarg. Mkans that while in Basior acts on a single
variable, which is initialised and incremented @@cremented) until a predetermined limit is
reached, in Cfor can manipulate, for example, three different \@#es (or, rather, three
expressions of different types).

What is more, none of the three expressions neeesgarily be specified; far without iteration
conditions is perfectly admissible.

At this point, we may as well dispense with statthg obvious, to concentrate instead on the
possible definition modalities of the three coradis which drive the cycle.

Let it immediately be said, therefore, that afeo demands that conditions be specified within
round brackets, and that if the cycle’s code blmckudes more than one instruction, one needs to
use the usual, open and closed curly brackets.

We can use thereak andcontinue instructions infor cycles too: the first to exit the cycle, the
second to “instantly” return to test evaluation.

Page 36

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

Also for cycles can be nested, and one should bear in tinaidhe most internal cycle performs an
entire series of iterations at every iterationtefmost immediate containing cycle.

Let us examine a few examplesfof cycle, which, in its most banal form, can look@tows:

for(i=1;i<k; i++)

{...}

There is nothing exceptional here. Before perfogmire first iteration, thevariable is initialised to
1. If it proves to be less than thevariable, the cycle is performed a first time.tA¢ end of each
iteration,i is incremented and subsequently compared Wit it proves less than the latter, the
cycle is repeated.

It is worth emphasising that all three logical alinates are contained within round brackets and
are separated from one another by a semi-colori)(‘only the ('; ;) sequence is obligatory within
afor cycle.

Indeed, we can haver with the following syntax:

for(; ;)
{ .}

What is the meaning of this? Nothing is initialisétb test is performed. Nothing is modified. The
secret lies in the fact that the absence of testisvalent of an always verified condition: thurs,
this example, for defines an infinite iterationhelprogram remains “trapped” in the cycle, until a
condition arises that enables it to abandon théecycsome other way, e.g. with the help of a
break.

Let us look at another example:

for(; a++;)

{ .}

There is nothing remarkable here, after all: wesified thata does not have a null value, aads
then incremented. If the verification returns a ifpes result, the cycle’s code is executed.
Verification is then repeated, closely followed thg increment, and so forth... By paying a little
closer attention to all this, one can notice th&for cycle is a perfect equivalent ofadile cycle.

In fact:

while(z++)

{ .}

Indeed, we could go so far as to say that in Gathiée instruction is perfectly useless, given that it
can always be replaced Ibgr, which, on the contrary, generally makes it pdsstb achieve a
more compact and efficient coding of the algorithbhe greater compactness derives from the
possibility of using, if need be, contextually foetcondition, an initialisation instruction and a
variation, too. The greater efficiency, on the othand, depends on the technical behaviour of the
compiler, which, where possible, automatically ngeasdor cycle counters, aggister variables.

Page 37

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

It is perhaps worth emphasising once more thattments of the round brackets depend heavily
on the cycle one wants to execute and on the pogeset-up one wants it to have, whereas the use
of the double semi-colon is mandatory. The finstl dast parameter do not necessarily have to
initialise and increment (or decrement) the couynjiest as the intermediate parameter does not
necessarily have to be a condition to be evaluaieth of these parameters can be any C
instruction, or can be omitted. The compiler, hoarewalways interprets the central parameter as a
condition to be verified, independently of whatattually is. This parameter is therefore always

evaluated as true or false, and from it depend botty into the cycle and its subsequent iterations

4.2.4 Usage of Cycles within UNI-PRO

It is worth underlining the fact that the use o€leg within the UNI-PRO development environment
entails a variation of the execution times of peogs. In fact, a very heavy cycle might slow down
considerably the execution times of the program.

Let us suppose that, for some reason (e.g. a progea error or a badly-set variable), the exit
condition from a cycle used within an algorithm eewccurs, thus creating an infinite-cycle
situation; this would entail an infinite main cyckesulting in the repeated processing of the same
operation (irresolvable). In this situation, thepligation would be stopped after a few hundreds of
milliseconds and an auto-reset event will follovmeTcontroller restarts from the reset interrupt.

It is very important, therefore, to pay great ditamto the use of the cyclical instructions ddsed
in the preceding paragraphs.

Page 38

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

5. Array and Structures

5.1 Array

An array can be described as “an organised catlecif objects”. First of all, the mere concept of
“collection” implies that such objects are of the same types,ttaking inspiration from the real
world, we could define an array of apples, whichldaot include any “pear objects”. Thus in C an
array is a collection of variables of the same kind

“Organised” entails that it should be possible to identifyuadially all objects within the array, in
a systematic way; in C, this is done through theeafsnumerical indexes, which in an N-
dimensioned array range from 0 to N-1.

Let us see in detail how it is possible to dectararray:

short myarray[10]; |

As can be seen above, an array is declared byhgititie variable name (hemgarray) and, within
square brackets, a figure which identifies the neindd elements of the same type (havert), i.e.
the size of the array.

Going back to the C program language, let us seeithie possible to declafféoat or char arrays:

float float_array[12];

char char_array[7];

Once an array has been declared, it is possildsedign a value to the corresponding position, by
recalling it via the index; for example, if one weadh to insert the value 87.43 into the float afray
fifth position, it would be enough to write:

float_array[4] = 87.43; |

If on the other hand one wanted to utilise the @aoantained in the third position of the array, and
store it into another variable, one should procestbllows:

float myvar;

myvar = float_array[2];

There is a strong relationship between the usagerays andor cycles; this is due to the fact that
a cycle enables counting a certain number of timas, by using a variable that increments (or
decrements) its own value at every cycle, its ssfae to scroll the array’s positions in a simple
way, with considerable economy of written code.

As an example, let us assume that we havataarray of 100 elements, and that we want to
calculate the sum of the contents of all the ag@gsitions. Given the array’s peculiar nature, we
are not going to start counting from 1, but fronafg¢ up to ninety-nine (thus having one-hundred
actual elements). We are going to perform the stiavery element of the array using the index,
incremented every time, taken from foe cycle.

Page 39

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

In code;

short my_array[100];
unsigned short i;
long sum = 0;

for (i=0; i<100; i++)
{

sum +=my_arrayli];

}

In this case, the control variable “i” of tf@r cycle is used as an index for the array; it shaveld
noted that visually it is immediately obvious ta are dealing with a cycle of 100 elements, since
the given condition is to have “i<100”, startingetbount from zero; thus the cycle is executed up to
the ninety-ninth element, which is less than oneedned.

At the next iteration, before executing the cycladsly, “i” is incremented by 1 and therefore is
worth 100, a value which no longer verifies theditian (since 100 is ndess than 100, and may
only be equal to it), and which causes the intdrompof thefor cycle; the counted interval (0 to 99)
is useful to represent all one-hundred elementsearray, given that, as already explained earlier
the elements in an array are counted starting frera.

In this way, it could also be fairly simple to malise all the values in the array. Let us imagmet
we wished to give each element in the array theevalhich equals its position; with the following
solution, we would save a lot of code:

short my_array[100];

unsigned short i;

for (i=0; i<100; i++)

{
my_array[i] = i;

}

Of course, an array can be initialised during datian, also passing values directly, for example,
as in the following case:

short numbers[] = { 7, 23, 4, 94, 120 }; |

Here an array of 5 elements is created, and thigysthe square brackets do not contain a size, as
this can be derived from the number of elementfead within the curly brackets.

Page 40

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

Let us take, as a further example, character arnapgch have the peculiar capacity of being
initialised without being divided by commas; we amv going to propose two equivalent forms of
initialisation, the first of which is undoubtedlye more practical one:

char my_string[] = "Hello World!";

char my_string[] = {'H","e’, 1", T, 0", ", W0,

A peculiarity of the C is that there is no propstrihg type”, i.e. what is known in other program
languages as “string” (think of C++ or Java). In sirings are represented by character arrays,
therefore one must be careful with the operatiorbéoperformed and one must remember that
anyway they do offer the advantage of enjoyingttal qualities of an array, among them that of
being able to scroll at leisure in the positiortted string itself. Every character array ends i
escape sequence, i.e. the value 0.

Obviously, the power of arrays also lies in thd faat it is possible to use multi-size arrays. In
practice, every element contained in an array edarn be itself an array; in this way, it is egsil
possible to represent tables and matrixes, or anytise that requires an even higher level of
representation.

The example given below uses a bi-dimensional doajefine a matrix of N lines and M columns:

short matrix[n][m]; |

whose elements can, for example, be scanned, aslgdwofor cycles, as illustrated below:

short n = 10;
short m = 12;
short matrix[n][m];
short i, j;
for (i=0; i<n; i++)
for (j=0; j<m; j++)
if (matrix]i][j] == 0)
{...}

Page 41

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

5.1.1 Usage of Arrays within UNI-PRO
UNI-PRO supports multi-dimensionatrays in C algorithms as defined by the ANSI-C standard.

Multi-dimensional arrays are for local variableslaonstants, and thus cannot be accessed outside
of the C algorithm in which they are defined.

Example:

CJ_WORD a[10][5];/* the order is [row] [col] : a is a matrix of 10 rows
and 5 columns */

UNI-PRO does not support dynamic arrays (arrayl matn-constant size).
Example:

CJ_BYTE size=10;

CJ_SHORT alsize];

This declaration will produce a compiler messageavalid array subscript: integral constant
expression is expected”.

The declaration

| CJ_WORD a[10]; |

defines an array of size 10, that is, a block ofcb@secutive objects named a[0], a[1], ...,a[9],
because C arrays are zero-indexed.

The notation a[i] refers to the i-th element of treay.

Note: As the C compiler does not recognize if the paogruses an array index out of limits, be
aware about the dimension of the arrays. If thexed element is outside of limits, it can cause
undesired overwrites of memory.

Example:

CJ_WORD a[10];

a[10] = 0;

This will cause memory overwrites.

As is the case for any type of computer programiming the responsibility of the programmer to

write code that prevents unwanted or unintendedltsefom mathematical operations and memory
access operations. In addition, UNI-PRO enablesidfiaition of some array-type entities, with the

following limitations:

- These entities are only variables, parameters mstaats, and thus cannot, for example, be
analogue inputs, digital outputs or timers.

- Arrays are only mono-dimensional.
- The maximum size for an entity array is 100 element

- Only the following data types can be used in tresays: CJ_VOID, CJ_BIT, CJ_BYTE,
CJ_S BYTE, CJ_SHORT, CJ_WORD, CJ_DWORD, CJ_LONG.

Note: The maximum size for an entity array is 100 eletsien

Page 42

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

5.2 Structures

UNI-PRO allows arbitrary structure types. The dsimues may be nested, and may contain arrays.

The sizeof operator applied to a structure typddgieghe sum of the sizes of the components.
However, the ANSI-C standard allows arbitrary paddietween components and also requires that
the fields of astruct be allocated in the order they are declared.

The controller has a 16 bit architecture with 2ebypundary alignment.

Example:

struct foo
{
CJ_SHORT a; /l 2 byte
CJ_CHAR b; // 1 byte
};

struct foo my_var;

return sizeof(my_var);

It will return the value 4.

Recursive structures are allowed, but their useoisuseful because it is not possible to handle
objects that are dynamically allocated llists , queues ortrees

Moreover structures with dynamic arrays are notrged.

5.3 Unions

UNI-PRO allows the use ainionsto use the same storage for multiple data types.

5.4 Strings

ANSI-C implements strings of characters as an affag internal representation of a string has a
null character ‘\O’ at the end, so the physicakage required is one more than the number of
characters written between the quotesings are then often represented by means of a pointer
pointing to the array.

UNI-PRO provides full support for string constantsable either in initializers or as

a constant.

Example:

char s[]="abc"; // A string array s is initialized using a string
constant.

i=1;

s[il="y’; /I The second character of s is modified.

Page 43

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

6. Comments

It is possible to insert into the code text comraenthich are totally ignored by the compiler and in
which the programmer can comment on the code dth@functionality of a given block of code.

There are two types of comments:
- single-line comments
- multi-line comments

To insert a single-line comment, it is necessareriter the sequence “//”, whereas a multi-line
comment starts with the sequence “/*” and ends thighsequence “*/”.

The following is an example of single-line comment:

Or, in the case of a multi-line comment:

Page 44

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

7. Define

With the help of thelefine (or #define) command, it is possible to define constants, withaim of
making the source code more easily legible.

Example: Let us suppose that we wanted to compaterder with a fixed value:

if (a > 32655)

a = 32655;

This portion of code if much less clear than thig:o

/IDefinition of a constant
#define MAX_VALUE 32655

if (a > MAX_VALUE)

a = MAX_VALUE;

As one can see, the second solution is much bmitenised, with the result that the written code is
more readily legible and understandable.

Let us now suppose that a given value is used aktreres within a program, and that there is a
need to modify it; in that case, one would havéntervene on every single instruction containing
that value, to modify it. This operation could cas®me bugs, indeed one could forget to update a
portion of code, or update it incorrectly. This ¢ypf problems can be solved by using the define
command; in fact, if one defines a constant:

[#define MY_VALUE 12345 |

it will be possible to use MY_VALUE in the code dis, thus avoiding the direct use of the numeric
value. Now, if it should be necessary to modify ¥a&ue, it would be sufficient to modify it only on
that instruction, in order to implicitly modify &lso on all other instructions that require itsgesa

#define MY_VALUE 12333
if (a = MY_VALUEX...}

for (i=0; i<MY_VALUE;i++) {...}

return MY_VALUE;

7.1 The DEFINE Instruction in UNI-PRO
Within UNI-PRO, the DEFINE instruction can be usedwo modalities:
1. Project DEFINE — as property which is visible tbthe project code.

2. Algorithm DEFINE — as property which is limited ¢ertain parts of the code.

Page 45

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

7.1.1 Project DEFINE

DEFINE, as used in this way, has the property afide@sable in any algorithm contained in the
project in question, without the need to redefineievery single block. In order to exploit this
functionality, it is sufficient to define the prajeconstants, via the function Property - Defines
(available in UNI-PRO) of every created projectr Hwe creation of the necessary DEFINE, the
following window undet th®efinesTab is used:

X
General | Wersion Info | Histoian Defines | Dptimizations | Change Lu:ugl
Diefine | Vahel
WY _WaLUE 12345
SET_POINT 12
PROBE_ALARM 1]
Add | Hephcel Delete | Up | Do
kd odify | Cancel |

In this way, the constants as defined above willikable in every part of the program, without any
need for redefinition.

7.1.2 Algorithm DEFINE

If a constant is necessary only within a given atbm, it is more convenient to define it
exclusively for that portion of code. Using the mait C syntax, the chosen constant is defined, and
this will only be valid in the algorithm in which has been defined.

“Editor
¥ Edi

#idefine ALARM TEMP 12 ;|
#define ALARM 1

#idefine NO ALARM 0

if (probe.Value >= ALARM TEHMP)
return LLARHM:

else
return NO ALARM:

ol of
x| Carcel |

This is an example of code which could be writtsing theAlgorithm Editor available in UNI-
PRO.

It is recommended to pay particular attention ie finctionality, in case the same DEFINE should
be declared within different algorithms, since angdification to the value of these DEFINE will
also have to be reproduced in all other algorithwhgre it is used; any omission would be very
likely to cause malfunction of the entire project.

Page 46

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE
8. Limitation

8.1 Function Calls

UNI-PRO only supports function calls of pre-defifadctions (CJ_GetWeekDay(), CJ_GetTime(),
CJ_ReadVarExpo(), etc.). It is not possible to rgaur own functions.

Note: In the algorithm window, press CTRL + Space tqldig the list of available pre-defined
functions.

8.2 Assertions

UNI-PRO does not supposssertions. Theassert statement will generate a compiler detected
error message.

8.3 Pointers

The use of pointers is allowed in UNI-PRO. Howetbey can be a source of many difficulties to
find programming errors, and care must be exerdigdtie programmer.

As is the case for any type of computer programmiinig the responsibility of the programmer to
write codes that prevent unwanted or unintendealtseBom memory access operations.

A WARNING

UNINTENDED EQUIPMENT OPERATION

* Be sure that all variables are initialized to aprapriate value before their first use as array
indices or pointers.

» Write programming instructions to test the validifyoperands intended to be used as array|
indices and memory pointers.

» Do not attempt to access an array element outsalddfined bounds of the array.

Failure to follow these instructions can result irdeath, serious injury, or equipment damage.

8.4 Dynamic Memory

UNI-PRO does not allow programs that attempt tocalte dynamic memory. All the functions that
are used to manage the dynamic memory, suamadlec() orfree() , cannot be compiled.

9. UNI-PRO Compilation
9.1 Unused Code

UNI-PRO compiles all codes, even when the codeisused. Unused codes, however, will not be
linked, which will reduce the memory size of thepkgation.

Page 47

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

10. Standard Library

The standard library is not part of the C langupigger, but an environment that supports standard
C will provide the function declarations and typedamacro definitions of this library, through
header files.

The ANSI standard defines these headers:

<assert.h><float.h> <math.h> <stdarg.h><stdlib.h>

<ctype.h> <limits.h> <setjmp.h><stddef.h><string. h>

<errno.h> <locale.h><signal.h><stdio.h> <time.h>

UNI-PRO supports by default only the following heesl They do not need to be included in each
algorithm.

| <math.h> <stdlib.h> <ctype.h> <string.h><errno.h> <stddef.h> \

This chapter provides the prototypes of the fumsiased in each library. To use those functions in
an algorithm, they must be included. Example:

| #include <math.h> |

10.1 Mathematical Functions: <math.h>

double acos(double);

double asin(double);

double atan(double);

double atan2(double, double);
double cos(double);

double sin(double);

double tan(double);

double cosh(double);

double sinh(double);

double tanh(double);

double exp(double);

double frexp(double, int *);
double Idexp(double, int);
double log(double);

double log10(double);

double modf(double, double *);
double pow(double, double);
double sqrt(double);

double ceil(double);

double fabs(double);

double floor(double);

double fmod(double, double);

Page 48

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

10.2 Strings Functions: <string.h>

10.3 Character Class Test: <ctype.h>

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

10.4 Utility Functions: <stdlib.h>

Page 50

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

APPENDIX 1: Common Mistakes and Style Rules in C

« Assignment (=) instead of comparison (==} One must be careful when, using a
conditional structure such dselse, one writes the comparison operation (==), asait, c
because of a simple typing error, become an as®gh (=). If this should happen, for
example, trying to compare two numbers for equaldge could have the unpleasant
situation in which, instead of checking whetlaer= b (which returns a TRUE only when
the two variables have the same value), we aregaystead that = b, which is practically
always TRUE, its value being FALSE only whiems worth 0.

« Missing () for a function —The inexperienced programmer tends to believeatanction
to which no parameters are passed needs no roaa#tebs; this is wrong, as the round
brackets must always be used, even in the absémpegameters.

« Array Indices — When arrays are initialised or used, one mustdreful with the used
indices (thus also with the number of elementsgabee, if an array is initialised with N
elements, its index must have a range between & fitst element) and N-1 (the"™
element).

+ C is Case-Sensitive- The C program language (just as C++ and Javéreitiates
between upper and lower-case letters, thus intiengréhem as two different characters;
therefore, one needs to be careful, especially wheables are being used.

- The semicolon “;” closes every instruction- This is such a common mistake, that it must
be mentioned: every instruction must end with aismion; this easy omission, which is
reported by the compiler, can waste precious tinteranders the programmer’s job unduly
burdensome.

- The names of variables, structures, constants andrictions must be significant- Given
that the keywords in this language are in Englisis recommended to use, for variables
and functions, mother-tongue names, so as to nigdassible to understand from the name
itself whether what is being used is really a kesdvof the language or a construction
created inside our program. Furthermore, when #raenis made up of several words, it
would be a good rule to highlight with initial cégds all words after the first one; this rule
does not, however, apply to constants, which masivhtten entirely in upper-case letters
and separated, when made up of more than one wptte underscore character “_".

- Usage, function and position of comments- Comments must accompany nearly all
instructions, to explain the meaning of what isngailone; in addition, they must be concise
and be updated as soon as an instruction is mddifla the other hand, comments must be
more exhaustive if they are needed to explain argalgorithm, or when they accompany a
function.

- Ternary Expression — The ternary expression <con@®><val>: <val> is generally a
substitute for anf-else structure, and it returns the first value if thgression is TRUE, or
the second if the expression is FALSE. Whenevesiptes a ternary expression should be
put all on one line, and, in order to avoid probdem is advisable to enclosed within round
brackets both the expression and the values.

Page 51

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

APPENDIX 2: Reserved Words of the C program languag e
The ANSI C standard recognises the following keydgor

auto
break
case
char
const
continue
default
do
double
else
enum
extern
float
for

goto

if

int

long
register
return
short
signed
sizeof
static
struct
switch
typedef
union
unsigned
void
volatile
while

Page 52

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

APPENDIX 3: Documentation of Built-in Functions

In the edit box of the algorithm, to see all thaitable functions press "Ctrl" + "Space" at the sam
time.

CJ_DATETIME StructToDateTime(CJ_DATETIME_STRUCT rtc)
This function converts a data structure CJ_DATETIERUCT to a CJ_DATETIME data type.

CJ _DATE StructToDate(CJ_DATE_STRUCT date)
This function converts a data structure CJ_DATE_BTR to a CJ_DATE data type.

CJ_TIME StructToTime(CJ_TIME_STRUCT time)
This function converts a data structure CJ_TIME_BTR time to a CJ_TIME data type.

CJ_DATETIME_STRUCT DateTimeToStruct(CJ_DATETIME Val ue)

This function returns a data structure CJ_DATETINMERUCT created from the value of the
Value parameters of CJ_DATETIME type used as input.

CJ _DATE_STRUCT DateToStruct (CJ_DATE Value)

This function returns a data structure CJ_DATE_STRWcreated from the value of tAéalue
parameters of CJ_DATE type used as input.

CJ _TIME_STRUCT TimeToStruct (CJ_TIME Value)

This function returns a data structure CJ_TIME_STHUcreated from the value of théalue
parameters of CJ_TIME type used as input.

CJ_BYTE CJ_GetSeconds(CJ_DATETIME dt)

This function returns the number of the seconds.5® contained in the parametet of
CJ_DATETIME type.

CJ_BYTE CJ_GetMinutes(CJ_DATETIME dt)

This function returns the number of the minutes.$0] contained in the parametet of
CJ_DATETIME type.

CJ_BYTE CJ_GetHours(CJ_DATETIME dt)

This function returns the number of the hours 28].. contained in the parametelt of
CJ_DATETIME type.

CJ_BYTE CJ_GetDay(CJ_DATETIME dt)

This function returns the number of the day [1].3%bntained in the parametedt of
CJ_DATETIME type.

CJ_BYTE CJ_GetWeekDay(CJ_DATETIME dt)

This function returns the weekday [0 = Sunday, 1= .8aturday] contained in the parameteof
CJ_DATETIME type.

CJ_BYTE CJ_GetMonth(CJ_DATETIME dt)

This function returns the number of the month IR].contained in the parametelt of
CJ_DATETIME type.

Page 53

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

CJ_BYTE CJ_GetYear(CJ_DATETIME dt)
This function returns the year [00...68] contaiirethe parametedt of CJ_DATETIME type.

CJ_TIME CJ_GetTime(CJ_DATETIME dt)

This function returns the time CJ_TIME deriveddioparameters, that is the number of seconds
starting from midnight of the same day.

CJ_DATE CJ_GetDate(CJ_DATETIME dft)

This function returns the date CJ_DATE deriveddtgarameters, that is the number of seconds
starting from midnight of the year 2000 to the ngght of the same day.

CJ_BIT CJ_GetSecondTic(void) and CJ_BIT CJ_GetMinueTic(void)

These two functions are managed under the systmupt. These functions have the same rule as
of the corresponding TIMER entities, but they dad use the controller memory because they are
managed in the firmware and therefore they caniteetty used in the algorithm without further
definition.

The function CJ_BIT CJ_GetSecondTic (void) retufreslogic value 1 for each elapsed second.
The function CJ_BIT CJ_GetMinuteTic (void) retuthe logic value 1 for each elapsed minute.

It is advisable to use these functions when a greatber of TIMER operations are required in the
project to maintain an acceptable level of perfaroga

CJ BIT CJ _FlagWrite (CJ WORD i, CJ BIT val) and CJ BIT CJ FlagRead
(CJ_WORDI)
These functions help to manage 8amaphores in the algorithm.

For example, to manage a shared resource betwégasgreach entity has to know the status of the
other entity to correctly utilize the shared reseurin UNI-PRO, this involves using several links
between algorithms, or each algorithm has to hheestatus of every other algorithm that would
use the shared resources as input. This solutisralidsadvantage as it consumes a lot of memory
in the controller.

To solve this, a typical solution of the concurreamputer programming is proposed: to use some
entities calledsemaphores. Semaphore is a structure which has the ability to managessto some
shared resources to control and assign them ioaitrect mode.

Two functions to realize this data management are:
CJ_BIT CJ_FlagWrite (CJ_WORD i, CJ_BIT val)

The function CJ_BIT CJ_FlagWrite (CJ_WORD i, CJ_BV¥al) sets the status of the i-th
semaphore.

CJ_WORD i: the semaphore number
CJ_BIT val: available/busy semaphore status
If val=0, the semaphore is set to free.
If val=1, the semaphore is set to busy.
CJ_BIT CJ_FlagRead(CJ_WORD i)
CJ_WORD i: the semaphore number
If val=0, the semaphore is set to free.
If val=1, the semaphore is set to busy.

Page 54

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

For example,
CJ_FlagWrite (10, 1)

sets the status of the tenth semaphore as busgefdohes the resources managed by this semaphore
will be accessible only by the entity that setshatus.

A busy semaphore can be freed only from the sartily &mat has set its status.

Function call:

CJ_FlagWrite (10, 0)

sets the status of tenth semaphore as free; theréh@ resources are free to use by other entities
The status of a semaphore is controllable usindgaifeving function:

CJ_BIT CJ_FlagRead (CJ_WORD: i)

reads the status of the i-th semaphore. It retuiihthe semaphore is busy, otherwise, it return$ O
the semaphore is busy, it is not possible to usedntrolled resources until the resources arelfree

CJ_SHORT CJ_WriteVarExpo(word add, long value)

This function allows to write directly from an alggfhm thevalue value of an exported variable at
the add address on Modbus protocol. Thus the variable adifiable from all project algorithms.
This feature is analog to tlgbobal variable concept used in computer programming.

To correctly use the function, it is required titia¢ value is exported on Modbus protocol using
Export Entities functionality that can be activated froifools/Export Entities menu of the
programming environment.

The CJ_SHORT output can have the following values:
0 = operation completed

-1 = operation correctly activated but not compeflor example, if you write a parameter, the
operation is completed only when the value is sandtEPROM, but it is considered valid when it
is saved in RAM)

-11 = item not present
1 = out of range
2 = busy

CJ_LONG CJ_ReadVarExpo(word add)

This function allows to read the value of the exedrvariable at thedd address on Modbus
protocol. The function is the complement@F WriteVar Expo(word add, long value).

To correctly use the function, it is required titia¢ value is exported on Modbus protocol using
Export Entities functionality that can be activated frofools/Export Entities menu of the
programming environment.

CJ_WORD CJ_MaxMainTime(void)
Returns the maximum cycle time of the main appilicatreturned in milliseconds.

CJ_WORD CJ_MinMainTime(void)
Returns the minimum cycle time of the main appiaratreturned in milliseconds.

CJ_WORD CJ_RunMainTime(void)
Returns the current cycle time of the main applicatreturned in milliseconds.

Page 55

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

CJ_BYTE CJ_MaxInterruptTime(void)
Returns the maximum cycle time of applicative inipt, returned in milliseconds.

CJ_BYTE CJ_MininterruptTime(void)
Returns the minimum cycle time of applicative intgt, returned in milliseconds.

CJ_BYTE CJ_RuninterruptTime(void)
Returns the current cycle time of applicative inipt, returned in milliseconds.

CJ BYTE CJ_ModbusAskQueue(void)
This function returns the free items number ofMwbus queue.

Note: If the MBS2 serial line is not configured as ModbMaster in the Hardware expert, a
compilation error (unresolved external symbol (CadllusAskQueue) appears).

CJ BYTE CJ_SendCommand(CJ_BYTE channel, CJ BYTE nod, CJ BYTE
command, short parl)

Allows to send a command from inside of an algonith
Returns 0 = command sent, 1= full queue

Channel: 0 = ExpBus

Node: logic node of ExpBus channel

Command: command index

Parl: 16 bit parameter associated to the command.

CJ_BIT CJ_IsFirstMain(void)
Returns 1 for the entire first loop of the mainleyaf applicative.

CJ_BIT CJ_Stack_Error_Read(void)
Returns 1 if there was a stack overflow of the proy

CJ_BIT CJ_Math_Error_Read(void)

Returns 1 if there was a mathematical error detectision by zero, overflow, underflow, Not a
Number.

To find the specific detected error, use the foilmpREAD functions.

CJ_BIT CJ_DivByZero_Error_Read(void)
Returns 1 if there was a division by zero.

CJ_BIT CJ_Overflow_Error_Read(void)
Returns 1 if there was an overflow.

CJ_BIT CJ_Underflow_Error_Read(void)
Returns 1 if there was an underflow.

CJ_BIT CJ_NaN_Error_Read(void)
Returns 1 if there was a NaN (Not a Number) gergatected error.

Page 56

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

void CJ_DivByZero_Error_Write(void)
Sets the division by zero indication.

void CJ_Overflow_Error_Write(void)
Sets the overflow indication.

void CJ_Underflow_Error_Write(void)
Sets the underflow indication.

void CJ_NaN_Error_Write(void)

Sets the arithmetic generic detected error; NaNns &t a Number, for example, the square root
of a negative number.

void CJ_Overflow_Error_Reset(void);
Resets the overflow indication.

void CJ_Underflow_Error_Reset(void);
Resets the underflow indication.

void CJ_DivByZero_Error_Reset(void);
Resets the division by zero indication.

void CJ_NaN_Error_Reset(void);

Resets the arithmetic generic detected error; Nadnm® Not a Number, for example, the square
root of a negative number.

void CJ_Math_Error_Reset(void);
Reset the global mathematical detected error flag.

CJ_SHORT CJ_E2_Error_Read (void);
Returns the E2 retained memory status:

0 CJ_E2 OK. Operating correctly

1 CJ E2 READ ERROR. An E2 access error has beentdétec
2 CJ E2 WRITE_ERROR. An E2 write error has been detiec
3 CJ_E2 CRC_ERROR. Inconsistent data in the memory.

CJ_SHORT CJ_RTC_Error_Read (void);
Returns the Real Time Clock status:

0 CJ_RTC_OK. Operating correctly
1 CJ _RTC_READ _ERROR. A RTC access error has beetddte

2 CJ RTC_LOW_VOLTAGE. The RTC chip is below the minim threshold voltage necessary for
maintaining information. The data present may mgé be valid.

Page 57

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

APPENDIX 4: Glossary of Terms

ANSI C : Standard version of the C program language Gjefimed by theAmerican National
Sandards Institute.

Assembly : Low-level program language, whose instructioms de directly converted into
machine code.

Assembler: A program which converts assembly code into nrechode.
C++: An extension of the C program language whichbéss object-oriented programming.

Compiler : A program which automatically translates codeéften in a high-level language, into
assembly language to be executed by the machine.

Entity : An element of the UNI-PRO development environmevhich can feature at least one
input or one output, represented by a data typecdwgbining several entities, one can create an
application program.

Firmware : A type of software which is stored in memory asdisually read-only. Within UNI-
PRO, it represents the software of the applicatiecuted by the controller.

Linker : A program which links together a series of safey-compiled sub-programs, in order to
obtain a complete operating program.

Software : Generic term used to indicate all non-tangilenponents of an information system,
such as the programs and the data being processed.

UNI-PRO : Graphic development environment which enablesctieation of controller programs in
an assisted and simplified way.

Page 58

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE
Bibliography:
Brian W.Kernighan and Dennis M.Ritchie,

"The C Programming Language”Second Edition,

Prentice Hall, 1988
Herbert Schildt,

“C: The Complete ReferencéSecond Edition,

Osborne, 1990

Page 59

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE

Page 60

UNI-PRO — INTRODUCTION MANUAL TO THE C PROGRAM LANGUAGE
UNI-PRO - Introduction manual to the C Program Luzangge.

Version 2.2 - January 2011.
Code 114UPROCLEZ22.

File 114UPROCLE22.pdf.

This publication is the exclusive property of EvEwco forbids any form of reproduction and publiicaf unless specially authorised by Evco itself.
Evco declines any responsibility regarding charésties, technical data or any mistakes contaimetthis publication or consequential from usage of
the same. Evco cannot be held responsible for anyades caused by non-compliance with warnings. Easerves the right to make any changes

without previous notice and at any time, withowgjpdice to essential characteristics of functiaggalnd safety.

Page 61

evCcoD

EveryControlGroup

HEADQUARTERS

Evco

Via Mezzaterra 6, 32036 Sedico Belluno ITALY
Tel. +39 0437-852468

Fax +39 0437-83648

info@evco.it

WWW.Eevco.it

OVERSEAS OFFICES

Control France

155 Rue Roger Salengro, 92370 Chaville Paris FRANCE
Tel. 0033-1-41159740

Fax 0033-1-41159739

control.france@wanadoo.fr

Evco Latina

Larrea, 390 San Isidoro, 1609 Buenos Aires ARGENTINA
Tel. 0054-11-47351031

Fax 0054-11-47351031

evcolatina@anykasrl.com.ar

Evco Pacific

59 Premier Drive Campbellfield, 3061, Victoria Mellbne, AUSTRALIA
Tel. 0061-3-9357-0788

Fax 0061-3-9357-7638

everycontrol@pacific.com.au

Evco Russia

111141 Russia Moscow 2-oy Proezd Perova Polya 9
Tel. 007-495-3055884

Fax 007-495-3055884

info@evco.ru

Every Control do Brasil

Rua Marino Félix 256, 02515-030 Casa Verde Sdo Fl® PAULO BRAZIL
Tel. 0055-11-38588732

Fax 0055-11-39659890

info@everycontrol.com.br

Every Control Norden

Cementvagen 8, 136 50 Haninge SWEDEN
Tel. 0046-8-940470

Fax 0046-8-6053148

mail2@unilec.se

Every Control Shangai

B 302, Yinhai Building, 250 Cao Xi Road, 200235 Shar@HINA
Tel. 0086-21-64824650

Fax 0086-21-64824649

evcosh@online.sh.cn

Every Control United Kingdom

Unit 19, Monument Business Park, OX44 7RW Chalgrowdof@, UNITED KINGDOM
Tel. 0044-1865-400514

Fax 0044-1865-400419

info@everycontrol.co.uk

